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Motivating Example:  Frailty

• We have a concept of what “frailty” is, but 
we can’t measure it directly.

• We think it combines strength, weight, 
speed, agility, balance, and perhaps other 
“factors”

• We would like to be able to describe the 
components of frailty with a summary of 
strength, weight, etc.



Factor Analysis
• Data reduction tool
• Removes redundancy or duplication from a set of 

correlated variables
• Represents correlated variables with a smaller 

set of “derived” variables.
• Factors are formed that are relatively 

independent of one another.
• Two types of “variables”:

– latent variables: factors
– observed variables



Frailty Variables
Speed of fast walk (+) Upper extremity strength (+)
Speed of usual walk (+) Pinch strength (+)
Time to do chair stands (-)       Grip strength (+)
Arm circumference (+) Knee extension (+)
Body mass index (+) Hip extension (+)
Tricep skinfold thickness (+)    Time to do Pegboard test (-)
Shoulder rotation (+)



Other examples

• Diet
• Air pollution
• Personality
• Customer satisfaction
• Depression



Applications of Factor Analysis

1. Identification of Underlying Factors:
– clusters variables into homogeneous sets
– creates new variables (i.e. factors)
– allows us to gain insight to categories

2. Screening of Variables:
– identifies groupings to allow us to select one 

variable to represent many
– useful in regression (recall collinearity)



Applications of Factor 
Analysis

3. Summary:
– Allows us to describe many variables using a few 

factors
4. Sampling of variables:

– helps select small group of variables of 
representative variables from larger set

5. Clustering of objects:
– Helps us to put objects (people) into categories 

depending on their factor scores



“Perhaps the most widely used (and misused) multivariate 
[technique] is factor analysis.  Few statisticians are neutral about
this technique.  Proponents feel that factor analysis is the 
greatest invention since the double bed, while its detractors feel 
it is a useless procedure that can be used to support nearly any
desired interpretation of the data.  The truth, as is usually the case,
lies somewhere in between.  Used properly, factor analysis can 
yield much useful information; when applied blindly, without 
regard for its limitations, it is about as useful and informative as
Tarot cards.  In particular, factor analysis can be used to explore
the data for patterns, confirm our hypotheses, or reduce the 
Many variables to a more manageable number.

-- Norman Streiner, PDQ Statistics



Orthogonal One Factor Model
Classical Test Theory Idea:

Ideal: X1 = F + e1 var(ej) = var(ek) , j ≠ k
X2 = F + e2
…
Xm = F + em

Reality: X1 = λ1F + e1 var(ej) ≠ var(ek) , j ≠ k
X2 = λ2F + e2
…
Xm = λmF + em

(unequal “sensitivity” to change in factor)
(Related to Item Response Theory (IRT))



Key Concepts

• F is latent (i.e.unobserved, underlying) variable 

• X’s are observed (i.e. manifest) variables

• ej is measurement error for Xj.

• λj is the “loading” for Xj.



• Measurement error has constant variance and is, on average, 0.
Var(ej) = σj

2 E(ej) = 0

• No association between the factor and measurement error
Cov(F,ej) = 0

• No association between errors:
Cov(ej ,ek) = 0

• Local (i.e. conditional) independence:  Given the factor, 
observed variables are independent of one another.

Cov( Xj ,Xk | F ) = 0 

Assumptions of Factor Analysis Model



Brief Aside in Path Analysis

Local (i.e. conditional) independence:  Given the factor, 
observed variables are independent of one another.

Cov( Xj ,Xk | F ) = 0

X1 e1

X2

X3

e2

e3

X’s are only
related to each
other through their
common 
relationship with F.  

F

λ1

λ2

λ3



Optional Assumptions
• We will make these to simplify our discussions

• F is “standardized” (think “standard normal”)
Var(F) = 1 E(F) = 0

• X’s are standardized:  
– In practice, this means that we will deal with 

“correlations” versus “covariance”
– This “automatically” happens when we use correlation 

in factor analysis, so it is not an extra step.



Some math associated with the ONE FACTOR model

• λj
2 is also called the “communality” of Xj in the one factor case 

(notation: hj
2)

• For standardized Xj , Corr(F, Xj) = λj

• The percentage variability in (standardized) Xj explained by F is 
λj

2.  (like an R2) 

• If Xj is N(0,1), then λj is equivalent to:
– the slope in a regression of Xj on F
– the correlation between F and Xj

• Interpretation of λj:
– standardized regression coefficient (regression)
– path coefficient (path analysis)
– factor loading (factor analysis)



Some more math associated with the 
ONE factor model

• Corr(Xj , Xk )= λjλk

• Note that the correlation between Xj and Xk is completely
determined by the common factor. Recall Cov(ej,ek)=0

• Factor loadings (λj) are equivalent to correlation between 
factors and variables when only a SINGLE common 
factor is involved.



Steps in Exploratory Factor 
Analysis

(1) Collect and explore data:  choose relevant 
variables.

(2) Extract initial factors (via principal components)
(3) Choose number of factors to retain
(4) Choose estimation method, estimate model
(5) Rotate and interpret
(6) (a)  Decide if changes need to be made (e.g. 

drop item(s), include item(s))
(b) repeat (4)-(5)

(7) Construct scales and use in further analysis



Data Exploration

• Histograms
– normality
– discreteness
– outliers

• Covariance and correlations between variables
– very high or low correlations?

• Same scale
• high = good, low = bad?



Aside: Correlation vs. Covariance

• >90% of Factor Analyses use correlation matrix
• <10% use covariance matrix
• We will focus on correlation matrix because

– It is less confusing than switching between the two
– It is much more commonly used and more commonly 

applicable
• Covariance does have its place (we’ll address 

that next time).



Data Matrix
• Factor analysis is totally dependent on 

correlations between variables.
• Factor analysis summarizes correlation 

structure
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Implications for assumptions about X’s?



Frailty Example 
(N=571)

|   arm   ski   fastw grip   pincr upex knee   hipext shldr peg     bmi usalk
---------+------------------------------------------------------------------------------------
skinfld |  0.71 |      |      |      |     |      |       |      |     |   |      |

fastwalk | -0.01   0.13     |      |      |     |      |       |      |     |       |      |
gripstr |  0.34 0.26   0.18     |      |     |      |       |      |     |    |      |

pinchstr |  0.34 0.33 0.16   0.62 |     |      |       |      |     |       |      |
upextstr |  0.12   0.14   0.26   0.31 0.25    |      |       |      |     |       |      | 
kneeext |  0.16   0.31 0.35 0.28   0.28   0.21    |       |      |     |       |      |
hipext |  0.11   0.28   0.18   0.24   0.24   0.15   0.56 |      |     |       |      |

shldrrot |  0.03   0.11   0.25   0.18   0.19   0.36 0.30 0.17     |     |       |      |
pegbrd | -0.10  -0.17  -0.34 -0.26  -0.13  -0.21  -0.15  -0.11  -0.15    |       |      |

bmi |  0.88 0.64 -0.09   0.25   0.28   0.08   0.13   0.13   0.01  -0.04     |      |
uslwalk | -0.03   0.09  0.89 0.16   0.13   0.27   0.30 0.14   0.22  -0.31 -0.10     |

chrstand |  0.01  -0.09  -0.43  -0.12  -0.12  -0.22  -0.27  -0.15  -0.09   0.25   0.03  -0.42



One Factor Model

X1 = λ1F + e1
X2 = λ2F + e2
…
Xm = λmF + em



One Factor Frailty Solution

Variable |   Loadings  
----------+----------
arm_circ |   0.28  
skinfld |   0.32  
fastwalk |   0.30  
gripstr |   0.32  
pinchstr |   0.31  
upextstr |   0.26  
kneeext |   0.33  
hipext |   0.26  

shldrrot |   0.21  
pegbrd |  -0.23  

bmi |   0.24  
uslwalk |   0.28  
chrstand |  -0.22  

These numbers represent
the correlations between 
the common factor, F, 
and the input variables.

Clearly, estimating F is 
part of the process



More than One Factor
• m factor orthogonal model

• ORTHOGONAL = INDEPENDENT

• Example:  frailty has domains, including 
strength, flexibility, speed.

• m factors, n observed variables
X1 = λ11F1 + λ12F2 +…+ λ1mFm + e1
X2 = λ21F1 + λ22F2 +…+ λ2mFm + e2

…….
Xn = λn1F1 + λn2F2 +…+ λnmFm + en



More than One Factor
• Matrix notation:  Xnx1 = ΛnxmFmx1 + enx1

• Same general assumptions as one factor model.
– corr(Fs,xj) = λjs

• Plus:
– corr(Fs,Fr) = 0 for all s ≠ r (i.e. orthogonal)
– this is forced independence
– simplifies covariance structure
– corr(xi,xj) = λi1 λj1+ λi2 λj2+ λi3 λj3+….

• To see details of dependent factors, see Kim and Mueller.



Matrix notation:  
Xnx1 = ΛnxmFmx1 + enx1
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Factor Matrix

• Columns represent derived factors
• Rows represent input variables
• Loadings represent degree to which each of the 

variables “correlates” with each of the factors
• Loadings range from -1 to 1
• Inspection of factor loadings reveals extent to which 

each of the variables contributes to the meaning of 
each of the factors.

• High loadings provide meaning and interpretation of 
factors (~ regression coefficients)
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Frailty Example

Variable |      1       2       3       4     Uniqueness

----------+------------------------------------------------------
arm_circ |  0.97 -0.01    0.16    0.01       0.02
skinfld |   0.71 0.10    0.09    0.26       0.40
fastwalk |  -0.01    0.94 0.08    0.12       0.08

gripstr |   0.19    0.10    0.93 0.10       0.07
pinchstr |   0.26 0.09    0.57 0.19       0.54
upextstr |   0.08    0.25 0.27 0.14       0.82
kneeext |   0.13    0.26 0.16    0.72 0.35
hipext |   0.09    0.09    0.14    0.68 0.48

shldrrot |   0.01    0.22 0.14    0.26 0.85
pegbrd |  -0.07   -0.33 -0.22 -0.06       0.83

bmi |  0.89 -0.09    0.09    0.04       0.18

uslwalk |  -0.03    0.92 0.07    0.07       0.12
chrstand |   0.02   -0.43 -0.07   -0.18       0.77

Factors

size speed Hand 
strength

Leg 
strength



Communalities
• The communality of Xj is the proportion of the variance 

of Xj explained by the m common factors:

• Recall one factor model: What was the interpretation of λj
2?

• In other words, it can be thought of as the sum of squared multiple-
correlation coefficients between the Xj and the factors.

• Uniqueness(Xj) = 1 - Comm(Xj)

Comm X j ij
i

m

( ) =
=
∑ λ2

1

Comm X j j( ) = λ2



Communality of Xj

• “Common” part of variance
– covariance between Xj and the part of Xj due to the 

underlying factors
– For standardized Xj:  

• 1 = communality + uniqueness
• uniqueness = 1 – communality

– Can think of uniqueness = var(ej)

If Xj is informative, communality is high
If Xj is not informative, uniqueness is high

• Intuitively:  variables with high communality share 
more in common with the rest of the variables. 



Communalities
• Unstandardized X’s:

– Var(X) = Var(F) + Var(e)
– Var(X) = Communality + Uniqueness
– Communality ≈ Var(F)
– Uniqueness ≈ Var(e)

• How can Var(X)=Var(F)= 1 when using 
standardized variables?  That implies that 
Var(e)=0.
• After Var(F) is derived, then F is ‘standardized’ to 

have variance of 1. Two step procedure.
• Actual variances are “irrelevant” when using 

correlations and/or standardized X’s.



How many factors?

• Intuitively: The number of uncorrelated 
constructs that are jointly measured by the X’s.

• Only useful if number of factors is less than 
number of X’s  (recall “data reduction”).

• Identifiability:  Is there enough information in the 
data to estimate all of the parameters in the 
factor analysis?  May be constrained to a certain 
number of factors.



Choosing Number of Factors

Use “principal components” to help decide 
– type of factor analysis
– number of factors is equivalent to number of 

variables
– each factor is a weighted combination of the 

input variables:  
F1 = a11X1 + a12X2 + …. 

– Recall:    For a factor analysis, generally, 
X1 = a11F1 + a12F2 +...



Estimating Principal Components

• The first PC is the linear combination with maximum 
variance

• That is, it finds vector a1 to maximize
Var(F1) = Var(a1

TX)= a1
TCov(X)a1

• (Can use correlation instead, equation is more 
complicated looking)

• Constrained such that Σa1
2 = 1

• First PC:  linear combination a1X that maximizes 
Var(a1

TX) such that Σa1
2 = 1

• Second PC:  linear combination a2X that maximizes 
Var(a2

TX) such that Σa2
2 = 1 AND Corr(a1

TX, a2
TX)=0.

• And so on…..



Eigenvalues
• To select how many factors to use, consider 

eigenvalues from a principal components 
analysis

• Two interpretations:
– eigenvalue ≅ equivalent number of variables which 

the factor represents
– eigenvalue ≅ amount of variance in the data 

described by the factor.
• Rules to go by:

– number of eigenvalues > 1
– scree plot
– % variance explained
– comprehensibility



Frailty Example
(principal components; 13 components retained)

Component    Eigenvalue Difference    Proportion    Cumulative

------------------------------------------------------------------
1        3.80792         1.28489      0.2929         0.2929
2        2.52303         1.28633      0.1941         0.4870

3        1.23669         0.10300      0.0951         0.5821
4        1.13370         0.19964      0.0872         0.6693

5        0.93406         0.15572      0.0719         0.7412
6        0.77834         0.05959      0.0599         0.8011
7        0.71875         0.13765      0.0553         0.8563

8        0.58110         0.18244      0.0447         0.9010
9        0.39866         0.02716      0.0307         0.9317

10        0.37149         0.06131      0.0286         0.9603
11        0.31018         0.19962      0.0239         0.9841

12        0.11056         0.01504      0.0085         0.9927
13        0.09552               .      0.0073         1.0000



Scree Plot for Frailty Example
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First 6 factors in principal components

Eigenvectors
Variable |      1          2          3          4          5  6    
----------+-----------------------------------------------------------------
arm_circ |   0.28486    0.44788   -0.26770   -0.00884    0.11395    0.06012  
skinfld |   0.32495    0.31889   -0.20402    0.19147    0.13642   -0.03465  
fastwalk |   0.29734   -0.39078   -0.30053    0.05651    0.01173    0.26724  
gripstr |   0.32295    0.08761    0.24818   -0.37992   -0.41679    0.05057  
pinchstr |   0.31598    0.12799    0.27284   -0.29200   -0.38819    0.27536  
upextstr |   0.25737   -0.11702    0.17057   -0.38920    0.37099   -0.03115  
kneeext |   0.32585   -0.09121    0.30073    0.45229    0.00941   -0.02102  
hipext |   0.26007   -0.01740    0.39827    0.52709   -0.11473   -0.20850  

shldrrot |   0.21372   -0.14109    0.33434   -0.16968    0.65061   -0.01115  
pegbrd |  -0.22909    0.15047    0.22396    0.23034    0.11674    0.84094  

bmi |   0.24306    0.47156   -0.24395    0.04826    0.14009    0.02907  
uslwalk |   0.27617   -0.40093   -0.32341    0.02945    0.01188    0.29727  
chrstand |  -0.21713    0.27013    0.23698   -0.10748    0.19050    0.06312  



At this stage….

• Don’t worry about interpretation of factors!
• Main concern:  whether a smaller number 

of factors can account for variability
• Researcher (i.e. YOU) needs to:

– provide number of common factors to be extracted 
OR

– provide objective criterion for choosing number of 
factors (e.g. scree plot, % variability, etc.)



Rotation
• In principal components, the first factor 

describes most of variability.
• After choosing number of factors to retain, we 

want to spread variability more evenly among 
factors.

• To do this we “rotate” factors:
– redefine factors such that loadings on various factors 

tend to be very high (-1 or 1) or very low (0)
– intuitively, it makes sharper distinctions in the 

meanings of the factors
– We use “factor analysis” for rotation NOT 

principal components!



Aside
Principal factors vs. principal components. The defining 

characteristic that distinguishes between the two factor 
analytic models is that in principal components analysis 
we assume that all variability in an item should be used 
in the analysis, while in principal factors analysis we only 
use the variability in an item that it has in common with 
the other items. In most cases, these two methods 
usually yield very similar results. However, principal 
components analysis is often preferred as a method for 
data reduction, while principal factors analysis is 
often preferred when the goal of the analysis is to 
detect structure.

(http://www.statsoft.com/textbook/stfacan.html)



5 Factors, Unrotated

Factor Loadings
Variable |      1          2          3          4          5  Uniqueness
----------+-----------------------------------------------------------------
arm_circ |   0.59934    0.67427 -0.26580   -0.04146    0.02383    0.11321
skinfld |   0.62122    0.41768 -0.13568    0.16493    0.01069    0.39391
fastwalk |   0.57983   -0.64697 -0.30834 -0.00134   -0.05584    0.14705
gripstr |   0.57362 0.08508    0.31497 -0.33229 -0.13918    0.43473
pinchstr |   0.55884 0.13477    0.30612 -0.25698   -0.15520    0.48570
upextstr |   0.41860 -0.15413    0.14411   -0.17610    0.26851    0.67714
kneeext |   0.56905 -0.14977    0.26877    0.36304 -0.01108    0.44959
hipext |   0.44167 -0.04549    0.31590 0.37823 -0.07072    0.55500

shldrrot |   0.34102 -0.17981    0.19285   -0.02008    0.31486 0.71464
pegbrd |  -0.37068 0.19063    0.04339    0.12546   -0.03857    0.80715

bmi |   0.51172    0.70802 -0.24579    0.03593    0.04290    0.17330
uslwalk |   0.53682   -0.65795 -0.33565 -0.03688   -0.05196    0.16220
chrstand |  -0.35387    0.33874 0.07315   -0.03452    0.03548    0.75223



5 Factors, Rotated
(varimax rotation)

Rotated Factor Loadings
Variable |      1          2          3          4          5  Uniqueness
----------+-----------------------------------------------------------------
arm_circ |  -0.00702    0.93063 0.14300    0.00212    0.01487    0.11321
skinfld |   0.11289    0.71998 0.09319    0.25655    0.02183    0.39391
fastwalk |   0.91214 -0.01357    0.07068    0.11794    0.04312    0.14705
gripstr |   0.13683    0.24745    0.67895 0.13331    0.08110    0.43473
pinchstr |   0.09672    0.28091    0.62678 0.17672    0.04419    0.48570
upextstr |   0.25803    0.08340    0.28257    0.10024    0.39928 0.67714
kneeext |   0.27842    0.13825    0.16664    0.64575 0.09499    0.44959
hipext |   0.11823    0.11857    0.15140    0.62756 0.01438    0.55500

shldrrot |   0.20012    0.01241    0.16392    0.21342    0.41562 0.71464
pegbrd |  -0.35849 -0.09024   -0.19444   -0.03842   -0.13004    0.80715

bmi |  -0.09260    0.90163 0.06343    0.03358    0.00567    0.17330
uslwalk |   0.90977 -0.03758    0.05757    0.06106    0.04081    0.16220
chrstand |  -0.46335 0.01015   -0.08856   -0.15399   -0.03762    0.75223



2 Factors, Unrotated

Factor Loadings
Variable |      1          2    Uniqueness

-------------+--------------------------------
arm_circ |   0.62007    0.66839    0.16876
skinfld |   0.63571    0.40640    0.43071

fastwalk |   0.56131   -0.64152    0.27339
gripstr |   0.55227    0.06116    0.69126

pinchstr |   0.54376    0.11056    0.69210
upextstr |   0.41508   -0.16690    0.79985
kneeext |   0.55123   -0.16068    0.67032
hipext |   0.42076   -0.05615    0.81981

shldrrot |   0.33427   -0.18772    0.85303
pegbrd |  -0.37040    0.20234    0.82187

bmi |   0.52567    0.69239    0.24427
uslwalk |   0.51204   -0.63845    0.33020

chrstand |  -0.35278    0.35290    0.75101



2 Factors, Rotated
(varimax rotation)

Rotated Factor Loadings
Variable |      1          2    Uniqueness

-------------+--------------------------------
arm_circ |  -0.04259    0.91073 0.16876
skinfld |   0.15533    0.73835 0.43071

fastwalk |   0.85101 -0.04885    0.27339
gripstr |   0.34324    0.43695 0.69126

pinchstr |   0.30203    0.46549 0.69210
upextstr |   0.40988 0.17929    0.79985
kneeext |   0.50082 0.28081    0.67032
hipext |   0.33483    0.26093    0.81981

shldrrot |   0.36813 0.10703    0.85303
pegbrd |  -0.40387   -0.12258    0.82187

bmi |  -0.12585    0.86017 0.24427
uslwalk |   0.81431 -0.08185    0.33020

chrstand |  -0.49897 -0.00453    0.75101



Unique Solution?

• The factor analysis solution is NOT 
unique!

• More than one solution will yield the same 
“result.”

• We will understand this better by the end 
of the lecture…..



Rotation (continued)
• Uses “ambiguity” or non-uniqueness of solution to make 

interpretation simpler.
• Where does ambiguity come in?

– Unrotated solution is based on the idea that each factor tries to 
maximize variance explained, conditional on previous factors

– What if we take that away?

– Then, there is not one “best” solution.  
• All solutions are relatively the same.
• Goal is simple structure
• Most construct validation assumes simple (typically 

rotated) structure.
• Rotation does NOT improve fit!



Rotating Factors (Intuitively)

F1

F1

F2
F2

Factor 1 Factor 2
x1 0.5 0.5
x2 0.8 0.8
x3 -0.7 0.7
x4 -0.5 -0.5

Factor 1 Factor 2
x1 0 0.6
x2 0 0.9
x3 -0.9 0
x4 0 -0.9
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Orthogonal vs. Oblique Rotation

• Orthogonal:  Factors are independent
– varimax: maximize squared loading 

variance across variables (sum over 
factors)

– quartimax: maximize squared loading 
variance across factors (sum over 
variables)

– Intuition:  from previous picture, there is 
a right angle between axes

• Note: “Uniquenesses” remain the 
same!



Orthogonal vs. Oblique Rotation

• Oblique:  Factors not independent. Change in 
“angle.”
– oblimin:  minimize squared loading covariance 

between factors.  
– promax: simplify orthogonal rotation by making small 

loadings even closer to zero.
– Target matrix:  choose “simple structure” a priori.  

(see Kim and Mueller)
– Intuition:  from previous picture, angle between 

axes is not necessarily a right angle.
• Note: “Uniquenesses” remain the same!



Promax Rotation: 5 Factors
(promax rotation)

Rotated Factor Loadings
Variable |      1          2          3          4          5  Uniqueness
----------+-----------------------------------------------------------------
arm_circ |   0.01528    0.94103 0.05905   -0.09177   -0.00256    0.11321
skinfld |   0.06938    0.69169 -0.03647    0.22035   -0.00552    0.39391
fastwalk |   0.93445 -0.00370   -0.02397    0.02170   -0.02240    0.14705
gripstr |  -0.01683    0.00876    0.74753 -0.00365    0.01291    0.43473
pinchstr |  -0.04492    0.04831    0.69161 0.06697   -0.03207    0.48570
upextstr |   0.02421    0.02409    0.10835   -0.05299    0.50653    0.67714
kneeext |   0.06454   -0.01491    0.00733    0.67987 0.06323    0.44959
hipext |  -0.06597   -0.04487    0.04645    0.69804 -0.03602    0.55500

shldrrot |  -0.06370   -0.03314   -0.05589    0.10885    0.54427 0.71464
pegbrd |  -0.29465   -0.05360   -0.13357    0.06129   -0.13064    0.80715

bmi |  -0.07198    0.92642 -0.03169   -0.02784   -0.00042    0.17330
uslwalk |   0.94920 -0.01360   -0.02596   -0.04136   -0.02118    0.16220
chrstand |  -0.43302 0.04150   -0.02964   -0.11109   -0.00024    0.75223



Varimax Rotation: 5 Factors
(varimax rotation)

Rotated Factor Loadings
Variable |      1          2          3          4          5  Uniqueness
----------+-----------------------------------------------------------------
arm_circ |  -0.00702    0.93063 0.14300    0.00212    0.01487    0.11321
skinfld |   0.11289    0.71998 0.09319    0.25655    0.02183    0.39391
fastwalk |   0.91214 -0.01357    0.07068    0.11794    0.04312    0.14705
gripstr |   0.13683    0.24745    0.67895 0.13331    0.08110    0.43473
pinchstr |   0.09672    0.28091    0.62678 0.17672    0.04419    0.48570
upextstr |   0.25803    0.08340    0.28257    0.10024    0.39928 0.67714
kneeext |   0.27842    0.13825    0.16664    0.64575 0.09499    0.44959
hipext |   0.11823    0.11857    0.15140    0.62756 0.01438    0.55500

shldrrot |   0.20012    0.01241    0.16392    0.21342    0.41562 0.71464
pegbrd |  -0.35849 -0.09024   -0.19444   -0.03842   -0.13004    0.80715

bmi |  -0.09260    0.90163 0.06343    0.03358    0.00567    0.17330
uslwalk |   0.90977 -0.03758    0.05757    0.06106    0.04081    0.16220
chrstand |  -0.46335 0.01015   -0.08856   -0.15399   -0.03762    0.75223



Promax Rotation: 2 Factors
(promax rotation)

Rotated Factor Loadings
Variable |      1          2    Uniqueness

-------------+--------------------------------
arm_circ |  -0.21249    0.96331 0.16876
skinfld |   0.02708    0.74470 0.43071

fastwalk |   0.90259 -0.21386    0.27339
gripstr |   0.27992    0.39268 0.69126

pinchstr |   0.23139    0.43048 0.69210
upextstr |   0.39736 0.10971    0.79985
kneeext |   0.47415 0.19880    0.67032
hipext |   0.30351    0.20967    0.81981

shldrrot |   0.36683 0.04190    0.85303
pegbrd |  -0.40149 -0.05138    0.82187

bmi |  -0.29060    0.92620 0.24427
uslwalk |   0.87013 -0.24147    0.33020

chrstand |  -0.52310 0.09060    0.75101

. 



Varimax Rotation: 2 Factors
(varimax rotation)

Rotated Factor Loadings
Variable |      1          2    Uniqueness

-------------+--------------------------------
arm_circ |  -0.04259    0.91073 0.16876
skinfld |   0.15533    0.73835 0.43071

fastwalk |   0.85101 -0.04885    0.27339
gripstr |   0.34324    0.43695 0.69126

pinchstr |   0.30203    0.46549 0.69210
upextstr |   0.40988 0.17929    0.79985
kneeext |   0.50082 0.28081    0.67032
hipext |   0.33483    0.26093    0.81981

shldrrot |   0.36813 0.10703    0.85303
pegbrd |  -0.40387   -0.12258    0.82187

bmi |  -0.12585    0.86017 0.24427
uslwalk |   0.81431 -0.08185    0.33020

chrstand |  -0.49897 -0.00453    0.75101



Which to use?
• Choice is generally not critical
• Interpretation with orthogonal is “simple” because 

factors are independent: Loadings are correlations.
• Structure may appear more simple in oblique, but 

correlation of factors can be difficult to reconcile (deal 
with interactions, etc.)

• Theory?  Are the conceptual meanings of the factors 
associated?

• Oblique:  
– Loading is no longer interpretable as covariance or 

correlation between object and factor
– 2 matrices:  pattern matrix (loadings) and structure matrix 

(correlations)
• Stata: varimax, promax



Steps in Exploratory Factor 
Analysis

(1) Collect data:  choose relevant variables.
(2) Extract initial factors (via principal components)
(3) Choose number of factors to retain
(4) Choose estimation method, estimate model
(5) Rotate and interpret
(6) (a)  Decide if changes need to be made (e.g. 

drop item(s), include item(s))
(b) repeat (4)-(5)

(7) Construct scales and use in further analysis



Drop variables with Uniqueness>0.50 in 5 factor model

. pca arm_circ skinfld fastwalk gripstr pinchstr kneeext bmi uslwalk
(obs=782)

(principal components; 8 components retained)
Component    Eigenvalue Difference    Proportion    Cumulative
------------------------------------------------------------------

1        3.37554         1.32772      0.4219         0.4219
2        2.04782         1.03338      0.2560         0.6779
3        1.01444         0.35212      0.1268         0.8047
4        0.66232         0.26131      0.0828         0.8875
5        0.40101         0.09655      0.0501         0.9376
6        0.30446         0.19361      0.0381         0.9757
7        0.11085         0.02726      0.0139         0.9896
8        0.08358               .      0.0104         1.0000
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3 Factor, Varimax Rotated

(varimax rotation)
Rotated Factor Loadings

Variable |      1         2          3    Uniqueness
-------------+-------------------------------------------

arm_circ |   0.93225 0.00911   -0.19238    0.09381
skinfld |   0.84253 0.17583   -0.17748    0.22773
fastwalk |   0.01214    0.95616 -0.11423    0.07256
gripstr |   0.19156    0.13194   -0.86476 0.19809
pinchstr |   0.20674    0.13761   -0.85214 0.21218
kneeext |   0.22656    0.52045 -0.36434    0.54505

bmi |   0.92530 -0.07678   -0.11021    0.12579
uslwalk |  -0.00155    0.95111 -0.09161    0.08700

weight Leg agility. hand str



2 Factor, Varimax Rotated

(varimax rotation)
Rotated Factor Loadings

Variable |      1          2    Uniqueness
-------------+--------------------------------

arm_circ |   0.94411 0.01522    0.10843
skinfld |   0.76461 0.16695    0.38751
fastwalk |   0.01257    0.94691 0.10320
gripstr |   0.43430    0.33299    0.70050

pinchstr |   0.44095    0.33515    0.69324
kneeext |   0.29158    0.45803    0.70519

bmi |   0.85920 -0.07678    0.25589
uslwalk |  -0.00163    0.89829 0.19308

weight speed



Uniqueness Issues
• One covariance structure can be produced by 

the same number of common factors with a 
different configuration

• One covariance structure can be produced by 
factor models with different numbers of 
common factors

• One covariance structure can be produced by 
a factor model and also by a non-factor 
analytic model.



Methods for Extracting Factors

• Principal Components (already discussed)
• Principal Factor Method
• Iterated Principal Factor / Least Squares
• Maximum Likelihood (ML)

Most common(?):  ML and Least Squares



Principal Factor Analysis
Uses communalities to estimate and assumes true communalities 

are the squared multiple correlation coefficients.
– Uniqueness(X) ≈ Var(e)
– Var(X) = Comm(X) + Uniqueness(X).

(1) Estimate uniqueness (i.e., var(ej)) using 1 – R2 where R2 is for 
a regression of Xj on all other X’s.
This assumes that the “communality” of X is the same as the 
amount of X described by the other X’s.

(2) (Correlation) Perform principal components on: 

Corr X Var e Communality( ) ( )− ≅

1

1

0

0

1

1

1

1

1 1 1

1

... ( , )
... ... ...

( , ) ...

( ) ...
... ... ...

... ( )

( ) ... ( , )
... ... ...

( , ) ... ( )

Corr X X

Corr X X

Var e

Var e

Var e Corr X X

Corr X X Var e

n

n n

n

n n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

−

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



Principal Factor Analysis

• Simplified explanation
• Steps:

1.  Get initial estimates of communalities
• squared multiple correlations
• highest absolute correlation in row

2.  Take correlation matrix and replace diagonal 
elements by communalities.  We call this the 
“adjusted” correlation matrix.

3.  Apply principal components analysis



Principal Factor Analysis

1 r12 r13 r14 r15 r16 r17

r21 1 r23 r24 r25 r26 r27

r31 r32 1 r34 r35 r36 r37

r41 r42 r43 1 r45 r46 r47

r51 r52 r53 r55 1 r56 r57

r61 r62 r63 r64 r65 1 r67

r71 r72 r73 r74 r75 r76 1

h1
2 r12 r13 r14 r15 r16 r17

r21 h22
r23 r24 r25 r26 r27

r31 r32 h32
r34 r35 r36 r37

r41 r42 r43 h4
2 r45 r46 r47

r51 r52 r53 r55 h5
2 r56 r57

r61 r62 r63 r64 r65 h6
2 r67

r71 r72 r73 r74 r75 r76 h7
2

1. Obtain correlation 
(covariance) matrix

2. Replace 1’s (variances) with
estimate of communality

3. Apply principal components to “adjusted” correlation
matrix and use results.



Iterative Principal Factor / Least 
Squares

1.  Perform Principal Factor as described 
above.

2.  Instead of stopping after principal 
components, reestimate communalities 
based on loadings.

3.  Repeat until convergence

Better than without iterating!



Iterated Principal Factors / Least 
Squares

Standard Least Squares approach

Minimize: 

( )1
2

− −∑ Comm X Var ej j
j

( ) ( )



Maximum Likelihood Method

• Assume F’s are normal
• Use likelihood function
• Maximize parameters
• Iterative procedure
• Notes:

– normality matters!
– Estimates can get “stuck” at boundary 

(e.g. communality of 0 or 1).
– Software choice matters (e.g. SPSS vs. Stata)
– Must rotate for interpretable solution



Choice of Method

• Give different results because they 
– use different procedures
– use different restrictions
– make different assumptions 

• Benefit of ML
– Can get statistics which allow you to compare 

factor analytic models



Which Method Should You Use?
• Statisticians:  PC and ML
• Social Sciences:  LS and Principal Factor
• Stata:  

– ‘pca’ command (principal components) in Stata 8
– ‘factor, pc’ command (principal components) in Stata7
– ‘factor, pf’ (principal factor)
– `factor, ipf’ (iterated principal factor)
– ‘factor, ml’ (maximum likelihood)

Caution!  ipf and ml may not converge to the right 
answer! Look for uniqueness of 0 or 1.  Problem of 
“identifiability” or getting “stuck.” Would be nice if it 
would tell you….
For this class?  I like IPF or ML, but don’t always 
converge.



Correlation vs. Covariance?
• Correlation MUCH more commonly seen.
• If using covariance, want measures in 

comparable units.
• Correlation for validation, covariance for 

summary
– if summary is the goal, relative variation in X’s matter.

• If using covariance, do not use “number of 
eigenvalues > 1” or “scree plot” for determining 
number of factors!  Nonsensical!

• Stata: all factor analyses are based on 
correlations. Only can use covariance in PC.



Factor Scores and Scales

• Each object (e.g. each woman) gets a factor score for 
each factor. 

• Old data vs. New data
• The factors themselves are variables
• “Object’s” score is weighted combination of scores on 

input variables
• These weights are NOT the factor loadings!
• Loadings and weights determined simultaneously so 

that there is no correlation between resulting factors.
• We won’t bother here with the mathematics….
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Interpretation

• Naming of Factors

• Wrong Interpretation:  Factors represent 
separate groups of people.

• Right Interpretation:  Each factor represents a 
continuum along which people vary (and 
dimensions are orthogonal if orthogonal)



Exploratory versus Confirmatory

• Exploratory:
– summarize data
– describe correlation structure between variables
– generate hypotheses

• Confirmatory (more next term)
– testing consistency with a preconceived theory
– A kind of structural equation modeling
– Usually force certain loadings to zero.
– More useful when looking for associations between 

factors or between factors and other observed 
variables.



Test Based Inference for Factor Analysis

• Likelihood ratio test:
– Goodness of fit: compares model prediction to observed 

data. Sensitive to sample size.
– Comparing models: Compare deviance statistics from 

different models

• Information Criteria:
– Choose model with highest IC.  Penalize for number of 

parameters (principle of parsimony)
– BIC (Schwarz):

log(L) - ln(N/2)*(number of parameters)
– AIC (Akaike): 

log(L) - (number of parameters in model)



Factor Analysis with 
Categorical Observed Variables

• Factor analysis hinges on the correlation matrix
• As long as you can get an interpretable 

correlation matrix, you can perform factor 
analysis

• Binary items?  
– Tetrachoric correlation
– Expect attenuation!

• Mixture of items?  
– Mixture of measures 
– All must be on comparable scale.



Criticisms of Factor Analysis
• Labels of factors can be arbitrary or lack scientific basis
• Derived factors often very obvious 

– defense: but we get a quantification
• “Garbage in, garbage out”

– really a criticism of input variables
– factor analysis reorganizes input matrix

• Too many steps that could affect results
• Too complicated
• Correlation matrix is often poor measure of association 

of input variables.



Stata Commands
factor y1 y2 y3,

Options:
Estimation method: pcf, pf, ipf, and ml (default is pf)
Number of factors to keep: factor(#)
Use covariance instead of correlation matrix: cov
* For Stata 8, to do principal components, must use ‘pca’

command!

Post-factor commands:
rotation:  rotate or rotate, promax
screeplot:  greigen
generate factor scores:  score f1 f2 f3…
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