Measuring Association and Dimensionality

Wednesday, September 6, 2006 Statistics for Psychosocial Research Lecture 2 Statistical topics for you to review on your own....

- Means, medians, proportions
- Confidence intervals
- T-tests, Z-tests
- Chi-square tests
- ANOVA
- Linear and logistic regression

Today's Topics

- Brief discussion about measuring L.V.
- Measuring Association:
 - Covariance
 - Pearson correlation
 - Spearman correlation
 - Measuring associations with non-linear data
 - tetrachoric / polychoric correlation
 - Odds ratios
 - Association matrices
 - Other commonly used measures of association and "disassociation."
- Dimensionality
 - Of items
 - Of constructs

Critical Ideas on Measurement

- Measurement of "latent" variables
- Latent variable ≈ construct ≈ factor ≈ domain
- Measurement = rules for assigning symbols to objects to numerically represent quantities of attributes
- Measuring attributes of a person
- Abstract nature
- Focus tends to be on constructs (social-psychological) that are based on strong theoretical framework
- REQUIRES MULTIPLE ITEMS PER CONSTRUCT

Critical Ideas on Measurement

- REQUIRES MULTIPLE ITEMS PER
 CONSTRUCT
- A part of scale development, we assess things like reliability and validity
- The way we do that is using the associations between the items
- Makes sense: items used to measure the same construct should be related!

Measuring Associations

- <u>Our specific goal</u>: Evaluate associations between pairs of variables being used to measure a construct of interest
- Examples of associations in latent constructs:
 - <u>depression</u>: sleeping problems ~ guilt?
 - <u>disability</u>: time to walk 10 m ~ speed to walk up 10 steps?
 - <u>schizophrenia</u>: delusions ~ hallucinations?
 - <u>SES</u>: education ~ income?

Associations in Psychosocial Research

- Crucial to the process of defining a construct
 - (1) "too" associated (i.e. redundant)?

(2) not associated at all?

- not appropriately describing "construct"
- measuring different dimensions of "construct" (e.g. positive versus negative symptoms of schizophrenia)

Associations between variables affect....

- Reliability
- Validity
- Factor Analysis
- Latent Class Analysis
- Structural Equation Models

→ Measurement of Associations is VERY important!

Variance and Covariance

• <u>(Sample) Variance</u>: Measures variability in one variable, X.

$$s_x^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2 \cong \sigma_x^2$$

• <u>(Sample) Covariance</u>: Measures how two variables, X and Y, covary.

$$s_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y}) \cong \sigma_{xy}$$

Covariances and Variances

Cov(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y)

$$Cov(X + Y) = E(X + Y)^{2} - [E(X + Y)]^{2}$$

= $E(X^{2} + 2XY + Y^{2}) - [E(X) + E(Y)]^{2}$
= $E(X^{2}) + 2E(XY) + E(Y^{2}) - [E(X)]^{2} - 2E(X)E(Y) - [E(Y)]^{2}$
= $\{E(X^{2}) - [E(X)]^{2}\} + \{E(Y^{2}) - [E(Y)]^{2}\} + 2\{E(XY) - E(X)E(Y)\}$
= $Var(X) + Var(Y) + 2Cov(X, Y)$

Examples of Variance

Examples of Covariance

Correlation, r

Correlation (i.e. "Pearson" correlation) is a scaled version of covariance

$$r_{xy} = \frac{S_{xy}}{\sqrt{S_x^2 S_y^2}}$$

- -1 ≤ *r* ≤ 1
- r = 1 perfect positive correlation
- r = -1 perfect negative correlation
- r = 0 uncorrelated

Covariance and Correlation

- Consider four different correlations:
 - 0.11
 - 0.60
 - 0.85
 - 0.91
- Which of the above indicates strongest association between two variables?

SCATTERPLOTS: Importance of Looking at Your Data!

Transforming Variables Can Assist in Obtaining Linear Relationship

Х

Correlation = 0.6

Floor and Ceiling Effects

Outliers

Corr = 0.77 : Corr = 0.95

Covariance and Correlation

• When are they appropriate measures of association?

What type of association do they describe?

• What is a drawback of transforming variable so that relationship is linear?

Spearman Correlation

- Use when:
 - skewed data
 - outliers
 - sparse data
- Effect:
 - downweights outliers
 - smoothes a curve to a straight line
- If relationship is *already* linear, then what?

Spearman Correlation

- Method:
 - sort x and y
 - replace data with ranks
 - calculate pearson correlation on ranks.

data		ran	ks
x	У	\mathbf{x}^{\star}	У*
0.1	0.4	1	1
0.3	0.6	2	3
0.5	0.5	3	2
0.6	0.9	4	4
0.8	1.8	5	6
1.0	1.2	6	5
r=0.79		r=0	.89

Spearman Correlation

Pearson r = 0.72

Spearman r = 0.59

Х

Rank(X)

Problems with Correlation/Covariance between variables

What if one (or both) variable(s) is (are) not really continuous?

e.g. number of pregnancies and education level

Is correlation appropriate?

Other issues

- Correlation assumes continuous variables
- Ordinal: Takes finite number of values

- e.g. on a scale of 1 to 5

• Binary: *r* = 0.35

Binary Example: Disability

- Two types of association
 - <u>redundancy</u>: b and c cells are close to 0 (i.e. disagreement is small).
 - <u>hierarchy</u>: either b OR c is close to 0, but other is not.
 - Pearson correlation mixes up association and similarity of "marginal"distribution
 - <u>Consequences</u>: If hierarchy is relevant, you get low reliability, consistency, and misleading internal validity by using pearson correlation.

Difficulty Walking 1/4

Some Alternative Measures

- Tetrachoric Correlation
 - binary variables
- Polychoric Correlation
 ordinal variables
- Odds Ratio
 - binary variables

- Estimates what the correlation between two binary variables <u>would be</u> if you could measure variables on a continuous scale.
- <u>Example</u>: difficulty walking up 10 steps and difficulty lifting 10 lbs.

Difficulty Walking Up 10 Steps

no difficulty difficulty Level of Difficulty

- Assumes that both "traits" are normally distributed
- Correlation, r, measures how narrov the ellipse is.
- a, b, c, d are the proportions in each quadrant

For ϕ = ad/bc,

Approximation 1:

$$Q = \frac{\varphi - 1}{\varphi + 1}$$

Approximation 2 (Digby):

$$Q = \frac{\varphi^{3/4} - 1}{\varphi^{3/4} + 1}$$

Lift

- Example: Tetrachoric correlation = 0.61 Pearson correlation = 0.41
- TC Interpretation?
 o Same as Pearson correlation.
- As good as Pearson correlation?
 - Makes assumptions that can't be tested
 - Assumes threshold is the same across people
 - Strong assumption that underlying quantity of interest is truly continuous

Difficulty Walking Up 10 Steps

* *

		No	Yes	_
Difficulty fting 10 lb.	No	40	10	50
	Yes	20	30	50
		60	40	100

Odds Ratio

- Measure of association between two binary variables
- Risk associated with x given y.
- Example:

odds of difficulty walking up 10 steps to the odds of difficulty lifting 10 lb:

$$OR = \frac{\frac{p_1}{(1-p_1)}}{\frac{p_2}{(1-p_2)}}$$
$$\cong \frac{ad}{bc}$$
$$= \frac{(40)(30)}{(20)(10)} = 6$$

Odds Ratio

Other option:

- continuity corrections.

Problem with continuity correction:

- somewhat arbitrary what value to use for correction.

Pros and Cons

- Tetrachoric correlation
 - same interpretation as Spearman and Pearson correlations
 - "difficult" to calculate exactly
 - makes (strong) assumptions
- Odds Ratio
 - easy to understand, but no "perfect" association that is manageable (i.e. $\{\infty, 0\}$)
 - easy to calculate
 - not comparable to correlations
- May give you different results/inference!

Association Matrices: Age, income,

education

Covariance Matrix

	grade	income	age
grade	6.61	28.18	-5.77
income	28.18	592.69	-29.10
age	-5.77	-29.10	81.23

Correlation Matrix

grade income age grade 1.00 0.45 -0.25 income 0.45 1.00 -0.13 age -0.25 -0.13 1.00

Association Matrices: depressed mood, sleep problems, fatigue

Odds Ratio Matrix

	depress	sleep	fatigue
depress		8.17	10.91
sleep	8.17		16.12
fatigue	10.91	16.12	

Other measures of association

- "Distances"
 - Euclidean
 - Canberra
 - Manhattan
 - Mahalanobis
- Often used for classification and clustering methods
- Our focus:
 - Cronbach's alpha
 - Factor analysis
 - ⇒ Both usually use Pearson correlation (most of the time)

Issues in Dimensionality of Constructs

- <u>Dimensionality</u>: concerned with the homogeneity of items used to measure a construct
- <u>Unidimensional construct</u>: items underlie a single factor
- <u>Multidimensional construct</u>: items "tap into" more than one factor
- Reliability and validity assessment DEPEND STRONGLY on unidimensionality assumption!

Examples

- Schizophrenia has two (or more) domains of symptoms:
 - Negative symptoms: e.g. lack of energy, social withdrawal
 - Positive symptoms: e.g. hallucinations, thought disorder
- Intelligence has 8 domains (by some definitions)

Spatial

- Linguistic Logical
- Musical
- Kinesthetic
- Interpersonal

Intrapersonal

Naturalistic

Unidimensionality

- F is the latent variable
- Y's are the items measuring F
- <u>Unidimensionality of items</u>: F (factor) is responsible for ALL of the associations between the Y variables.
- A set of items is unidimensional if the correlations among them can be accounted for by a single factor

NOT Unidimensional

- Arrows between variables (either straight and uni-directional, or curved and bi-directional) imply 'associations exist'
- Here, Y₁ and Y₂ are associated even after accounting for F
- This set of items is NOT unidimensional
- Implications: there is something else going on...perhaps another factor?

Mathematically

• Partial correlation:

$$corr(x_1, x_2 | F) = \frac{r_{12} - r_{1F}r_{2F}}{\sqrt{(1 - r_{1F}^2)(1 - r_{2F}^2)}}$$

• If the partial correlation between each pair of items is equal to zero, then the set of items are unidimensional.

That sounds "easy", but....

- A set of items is unidimensional if the correlations among them are accounted for by a single factor
- An *item* is unidimensional if it is measure of only a single construct.

Are Y_1 , Y_1 , and Y_3 a unidimensional set of items?

What about dimensionality of a construct?

- If multiple sets of *n* items from the domain of the construct are taken and the partial correlations among each set are zero, then the *construct* is unidimensional.
- BUT, it is possible that a set of items is unidimensional, but the construct or the individual indicators are not unidimensional

What about dimensionality of a construct?

- F₁ is NOT unidimensional
- Why? All sets of items from the domain are not unidimensional.
- The association between Y₃ and Y₄ cannot be accounted for by F₁ alone

Relevance

- Relevance
 - It is generally preferable to have unidimensional items
 - This means that the items load strongly on only one factor
- Testing for dimensionality
 - Factor analysis (exploratory and confirmatory)
 - NOT alpha-coefficient!