Sample Size Considerations in Factor Analysis and Latent Class Analysis

October 18, 2006 Statistics for Psychosocial Research

Outline of Today's Discussion

- Sample Size for reliability analyses
 - Confidence intervals for reliability
 - Hypothesis testing in the context of reliability
- Sample Size in factor analysis
- Sample size in latent class analysis

Statistical Power

- Power describes the ability to detect associations if they truly exist
- Determined by
 - Difference desired to be detected
 - Small difference: small power
 - Large difference: large power
 - Alpha level (type I error)
 - Standard deviation/measure of variance
 - SAMPLE SIZE

Sample Size and Power

- An underpowered study: An association may not be "statistically significant" in your sample, even though the association exists in the population
- An overpowered study:
 - You may have collected more data than you needed
 - You may detect "trivial" associations

Sample sizes for confidence intervals around intraclass correlation coefficients

- Early approaches: fixed numbers
 - At least 300 (Nunnaly, JC (1978) *Psychometric Theory*. McGraw-Hill, New York.)
 - At least 200 (Guilford, JP (1956) *Psychometric Methods*, 2nd Edition McGraw Hill, New York.)
- Big issue: Power should depend on the magnitude of the ICC
 - ICCs near 0 will require larger sample sizes, and larger ICCs require smaller sample sizes
 - Sample size recommendations that don't take magnitude of ICC into account: may overpower or underpower a study.

Confidence intervals around intraclass correlation coefficients

- Statistical idea: use formulas developed for Pearson correlation coefficient for the reliability coefficient
- Transform *r* using Fisher's transformation (because distribution of r is not normal):

$$z'(r) = \frac{1}{2} \ln \frac{(1+r)}{(1-r)}$$

Confidence intervals around ICCs

- Define CI width of interest for $r(CI_H)$
- Calculate z'(r) for expected r

• Variance of z'(r) is
$$\frac{1}{N-3}$$

• CI is
$$z'(r) \pm Z_{\alpha/2} \frac{1}{\sqrt{N-3}}$$

• Consider that we need to back transform: width of CI for r is defined as

$$z'(r) - z'(r - CI_H)$$

Confidence intervals around ICCs

• Then we can solve for N in the following:

$$z'(r) - z'(r - CI_H) = Z_{\alpha/2} \frac{1}{\sqrt{N-3}}$$

• Therefore, N can be calculated as

$$N = \left[\frac{Z_{\alpha/2}}{z'(r) - z'(r - CI_H)}\right]^2 + 3$$

• TAKE HOME POINT: <u>N depends on size of r.</u>

Confidence Intervals around ICCs

Reliability

Source: Streiner, David L. and Geoffrey R. Norman. 1995. *Health Measurement Scales, 2nd Edition*. New York: Oxford University Press.

Sample size for hypothesis testing with reliability coefficients

- May need to determine if reliability coefficient is significantly different from 0
- May need to determine if reliability coefficient is significantly different from a pre-specified level
 - e.g. is it significantly better than reliability of pre-existing tests?
 - e.g. is reliability of a measure significantly improved by training of raters?

Estimate of sample sizes needed to detect differences between target reliability score (R_1) and a pre-specified reliability score (R_0) , with two evaluations per subject.

					R_1				
R_0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.0	616	152	70	36	22	15	10	7	4
0.1		592	143	61	33	20	12	8	5
0.2			544	129	53	28	16	10	6
0.3				477	109	44	22	11	7
0.4					394	87	33	16	8
0.5						301	63	22	9
0.6							206	40	12
0.7								119	19
0.8									46

Source: Walter, S.D., M. Eliasziw, and A. Donner. 1998. "Sample Size and Optimal Designs for Reliability Studies" *Statistics in Medicine* 17:101-110.

Sample Size for Factor Analysis

- Currently a wide range of recommendations
- OLD Single sample size recommendations
 - Recommendations of at least 100:
 - Gorsuch, R. L. 1983. *Factor Analysis, 2nd edition*. Hillsdale, NJ: Erlbaum
 - Kline, P. 1979. *Psychometrics and Psychology*. London:Academic Press
 - Recommendation of 200:
 - Guilford, J. P. 1954. *Psychometric Methods, 2nd edition*. New York: McGraw-Hill.
 - Recommendation of 250:
 - Cattell, R. B. 1978. *The Scientific Use of Factor Analysis*. New York: Plenum

Sample Size in Factor Analysis

- Single sample size recommendations (cont.)
 Recommendation of 500:
 - Comrey, A. L., and H. B. Lee. 1992. *A First Course in Factor Analysis*. Hillsdale, NY: Erlbaum
 - These authors also propose a scale, whereby: 100 = poor, 200 = fair, 300 = good, 500= very good, 1000 = excellent

N to p ratio

- N = sample size
- p = number of items included in analysis
- Recommendation of a ratio from 3 to 6: (Cattell, 1978)
- Recommendation of a ratio of at least 5 (Gorsuch, 1983)
- Recommendation of at least 10 (Everitt, BS, 1975).

p:r Ratio -- Modern approach

- MacCallum et al approach
- Necessary N, or *N:p* ratio for recovery of population factor is not invariant across studies.
- Simulation studies where samples with N as low as 78 and N:p ratios of 1:3 have resulted in good recovery of population parameters.
- Highlight importance of three factors, in conjunction:
 - Sample size
 - Communality
 - p:r ratio
 - (p=number of items; r=number of factors)

Source: MacCallum, Robert C., Keith F. Widaman, Shaobo Zhang, and Sehee Hong. 1999. "Sample Size in Factor Analysis." *Psychological Methods* 4:84-99.

Source: MacCallum, Robert C., Keith F. Widaman, Shaobo Zhang, and Sehee Hong. 1999. "Sample Size in Factor Analysis." *Psychological Methods* 4:84-99.

- Based on definitions for previous graphs:
- *p:r* ratio: number of items to number of factors
- communality:
 - high: 0.6, 0.7, and 0.8
 - wide: 0.2 to 0.8 in 0.1 increments
 - low: 0.2, 0.3, and 0.4

- K: index of interest
- For each factor:

$$\phi_{k} = \frac{\displaystyle\sum_{j=1}^{p} f_{jk(s)} f_{jk(t)}}{\sqrt{\left(\displaystyle\sum_{j=1}^{p} f_{jk(s)}^{2}\right) \left(\displaystyle\sum_{j=1}^{p} f_{jk(t)}^{2}\right)}}$$

where $f_{jk}(t)$ = true population factor loading for variable j on factor k and $f_{jk}(s)$ is the corresponding sample loading

• Summary for the whole model:

 interpretation of K: 0.98 to 1.00 = excellent 0.92 to 0.98 = good 0.82 to 0.92 = borderline 0.68 to 0.82 = poor
< 0.68 = terrible

Sample Size Considerations in Latent Class Analysis

- No formal approach has been taken
- Critical factors that will affect 'necessary' sample size (in order of importance)
 - Class sizes
 - If trying to detect small classes, need large N
 - Nature of the sample (epidemiologic versus patient population
 - Number of classes to be fit
 - The larger the number of classes, the larger the N

Sample Size Considerations in Latent Class Analysis

- Critical factors that will affect 'necessary' sample size (continued)
 - Overall prevalence of items
 - Generally, want items with large variability (close to 0.5)
 - Depends on sensitivity of items (i.e., class specific prevalences)
 - Number of items
 - Some argue need at least 5 per number of possible patterns (doesn't make sense to me)
 - More items allow more complex structure
 - May tend to increase measurement error
 - More items may tend to 'encourage' violation of conditional independence and violate model fit
 - Allows larger number of classes (due to identifiability)