Lab Handout for Homework #2: FOR STATA VERSION 9.0

In this handout, we briefly cover the commands needed to perform factor analysis in stata version 9 and some commands associated with problem set2. You would encounter two situations when performing factor analysis: (1) with variables in the dataset; (2) with correlation matrix (as part (5) in problem set2.) Details are described below:

(1) Principal components analysis: performed to decide how many factors should be retained (1.1) for variables

Description	Command	default	Preceded by	Followed by	Example:
Principal components analysis	рса			llist of variables	pca a b c
Specifies what type of matrix from which factors are extracted	cov ariance	Matrix of corrs	Can only be used with pca; preceded by specification of number of factors		pca a b c, cov pca a b c, fa(3) cov pca a b c, pf mine(1) cov
Plot eigenvalues	screeplot		Running of factor command		screeplot

(1.2) for correlation matrices

You may want to perform a factor analysis directly from a correlation matrix rather then form variables in a dataset. Since you may not have access to the dataset, or you may have used another method of estimating a correlation matrix-e.g., as amatrix of tetrachoric correlation (as part(5)). See help for more detail.

Description	Command	Preceded by	Followed by	Example:
Principal components analysis	pcamat matname ,n(#)		Correlation matrix	pcamat <i>P</i> , <i>n</i> (789)

(2)Factor Analysis (2.1) for variables

Description	Com	mand	default	Preceded by	Followed by	Example:
Performs factor analysis	Fact	or				fac a b c
Type of estimation	pf	principal factor	pf			fac a b c, ml
(extraction method)	pcf	Principle components factor				
	ipf	iterated principal factor				
	ml	Maximum likelihood				
Specifies number of factors	factors(as an option)		# of vars	Extraction method	The number of desired factors in parentheses	fac a b c, pf fa(3)
Keeps factors with eigenvalues > #specified	mine	eigen	Default for all methods except pcf	Extraction method	The cutoff eigenvalue in parentheses	fac a b c, mine(1)

Revised on 0928/2005

		is 0 ;The default for pcf is 1		
Display loadings as blank when loadings <#	blanks(#)		Extraction method	fac a b c, fa(2) blanks(0.30)

quick note: in commands, for example *factor*, you can type the whole word, or just the first few letters in **bold**, fac.

(2.2) for correlation matrix

Description	Command	Preceded by	Followed by	Example:
Factor analysis	factormat matname ,n(#)		Correlation matrix	factormat P,n(979) factors(2) ipf

(3) factor analysis post-estimation commands

Description	Command	default	Preceded by	Example:
Rotates extracted factors: Varimax or oblique rotation	rotate	Varimax	Running of factor command	rot
Specifies (oblique) rotation	p romax	Promax(3)	Factor command	rot, p(2) rot, p
	oblimin oblique		Factor command	rot, oblimin oblique
Plot factor loadings	loadingplt		Factor command	loadingplot
Predict regression or Bartlett scores	predict	Regression scores	Running of factor command or rotation	predict u1 u2 u3, bartlett
Gives you scores from unrotated matrix	norotate	If you have already rotated, and you don't specify <i>norotate</i> it will give you scores from the rotated factors	Predict command and list of factor names and a comma	predict u1 u2 u3, norotate

Another Quick Notes:

As a time saver, if you variist consisted of variables with the same prefix followed by consecututive numbers (i.e, *slf961,slf962,slf963*) then you could type the factor command this way: fac slf961-slf965

Now, even though after you run the factor command it shows you all of the eigenvalues, it will only keep the ones you specify for use through either factors(#) or mineigen(n). Those eigenvalues and corresponding eigenvectors are then saved for use with either the **predict** or **rot**ate commands.

Now something odd about stata: when you do the score command, you are, perhaps unbeknownst, naming the factors that have just been extracted. If you wanted to get factor scores before and after rotation, then you would give the unrotated factors one set of names, and the rotated factors another set of names. As soon as you name the factors, if you look at your dataset, you will see that those variables have been added at the end of your data.

(5)The following postestimation commands are of special interests after factor and factormat :

- **estat common** reports the correlation matrix of the common factors and is more of interest after oblique rotations.
- **estat factors** reports model-selection criteria (AIC and BIC) over all the factors retained in an analysis.
- **estat rotatecompare** reports the unrotated factor loadings next to the most-recent rotated loadings.
- **estat structure** reports the factor structure the correlations between the variables and the common factors.
- estat rotatecompare reports the unrotated (principal) components next to the most recent rotated components
- estat anti reports the anti-image correlation and anti-image covariance matrices.
- estat kmo reports the Kaiser–Meyer–Olkin measure of sampling adequacy.
- estat residuals reports the difference between the observed correlation or covariance matrix and the fitted (reproduced) matrix using the retained factors.
- estat smc reports the squared multiple correlations (SMC) between each variable and all other variables. SMC is a theoretical lower bound for communality, so it is an upper bound for the unexplained variance.

More detail about factor analysis , please refer to "STATA MULTIVARIATE STATISTCIS REFERENCE MANUAL RELEASE 9" or search for help command .

(5)Sample Example

. factor slf941 slf942 slf943 slf944, fa(2) (obs=328)

Factor	(principal : Eigenvalue	factors; 1 factor Difference	retained) Proportion	Cumulative
1	1.77520	1.83445	1.2556	1.2556
2	-0.05925	0.06636	-0.0419	1.2137
3	-0.12561	0.05094	-0.0888	1.1249
4	-0.17656		-0.1249	1.0000

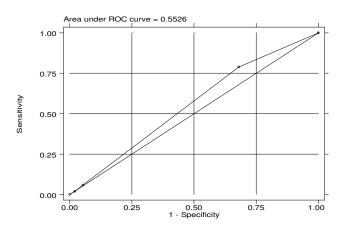
Variable	I	Factor Loa 1	adings Uniqueness
	•+•		
slf941	Ι	0.66556	0.55703
slf942		0.73133	0.46516
slf943		0.60900	0.62912
slf944	Ι	0.65308	0.57349

. rot

	(varimax rotation)				
		Rotated	Factor	Loadings	
Variable		1	Uniqu	leness	

	+		
slf941		0.66556	0.55703
slf942		0.73133	0.46516
slf943		0.60900	0.62912
slf944		0.65308	0.57349

(6)Syntax for logistic and ROC curve


Svntax:

logistic depvar varlist	/*logit also works*/
Iroc	/*To make ROC curve*/
roctab <i>depvar varlist</i> , detail	/* displaying the sensitivity, specificity, calculates the area under the ROC curve */

example: logistic mari1594 slf941

	_R chi2	(1) =		296
Pro Log likelihood = -136.86173		2 = Pseudo	0.2331 R2 = (0.0052
mari1594 Odds Ratio Std. Err.			•	. Interval]
slf941 .7445419 .1826371				1.204176

Iroc

. roctab $mari1594 \, slf941 , \,$ detail Detailed report of Sensitivity and Specificity

Cutpoint	Sensitivity	Specificity	Correctly Classified	LR+	LR-
(>= 1) (>= 2) (>= 3) (>= 4) (> 4)	0.00% 21.15% 94.23% 98.08% 100.00%	100.00% 68.03% 5.33% 2.05% 0.00%	82.43% 59.80% 20.95% 18.92% 17.57%	0.6617 0.9953 1.0013 1.0000	1.0000 1.1589 1.0828 0.9385