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Biostatistical Methods II

Description: This is a one-semester course intended for graduate students 
pursuing degrees in biostatistics and related fields such as epidemiology 
and bioinformatics. Topics covered will include linear, logistic, poisson, and 
Cox regression. Advanced topics will be included, such as ridge regression 
or hierarchical linear regression if time permits.  Estimation, interpretation, 
and diagnostic approaches will be discussed. Software instruction will be 
provided in class in R and Stata. Students will be evaluated via 
homeworks (55%), two in-class exams (35%) and class participation 
(10%). This is a four credit course.

Textbook: Applied Linear Statistical Models. Kutner, Nachtsheim, Neter 
and Li. McGraw-Hill, Fifth Edition

Prerequisites: Biometry 700

Course Objectives: Upon successful completion of the course, the student 
will be able to

•

 

Apply, interpret and diagnose linear regression models
•

 

Apply, interpret and diagnose logistic, poisson and Cox regresssion models



Biostatistical Methods II

Instructor: Elizabeth Garrett-Mayer

Website: http://people.musc.edu/~elg26/teaching/methods2.2009/methods2.2009.htm

Contact Info: Hollings Cancer Center, Rm 118G

garrettm@musc.edu
(preferred mode of contact is email)

792-7764

Time: Mondays and Wednesdays, 1:30-3:30

Location: Cannon Place, Room 305V

mailto:garrettm@musc.edu


Biostatistical Methods II

Lecture schedule is on the website
First time teaching this class
•

 

syllabus is a ‘work in progress’
•

 

timing of topics subject to change
•

 

lectures may appear on website last-minute
Computing
•

 

R
•

 

Stata
•

 

integrated into lecture time
Homeworks, articles, datasets will also be posted to website
•

 

some/most problems will be from textbook
•

 

some datasets will be from textbook CD
If you want printed versions of lectures:
•

 

download and print prior to lecture; OR
•

 

work interactively on your laptop during class
We will take a break about halfway through each lecture 



Expectations (from R. Carter)

Academic
•

 

Participate in class discussions
•

 

Invest resources in YOUR education
•

 

Complete homework assignments on time
•

 

The results of the homework should be communicated so that a person 
knowledgable in the methodology could reproduce your results.

•

 

Create your own study groups
Challenge one another
everyone needs to contribute
you may do homeworks together, but everyone must turn in his/her own 
homework.  
written sections of homework should be ‘independently’ developed

General
•

 

Be on time to class
•

 

Be discrete with interruptions (pages, phones, etc.)
•

 

Do NOT turn in raw computer output



Other Expectations

Methods I!
You should be very familiar with
•

 
confidence intervals

•
 

hypothesis testing
t-tests
Z-tests

•
 

graphical displays of data
•

 
exploratory data analysis

estimating means, medians, quantiles of data
estimating variances, standard deviations



About the instructor

B.A. from Bowdoin College, 1994
•

 

Double Major in Mathematics and Economics  
•

 

Minor in Classics
Ph.D. in Biostatistics from Johns Hopkins, 2000
•

 

Dissertation research in latent class models, Adviser Scott Zeger
Assistant Professor in Oncology and Biostatistics at JHU, 2000-2007
Taught course in Statistics for Psychosocial Research for 8 years
Applied Research Areas:
•

 

oncology
Biostats Research Areas:  
•

 

latent variable modeling
•

 

class discovery in microarray data
•

 

methodology for early phase oncology clinical trials
Came to MUSC in Feb 2007



Computing

Who knows what?

Who WANTS to know what?

Who will bring a laptop to class?

What software do you have and/or prefer?

Should we get a lab classroom?



Regression

Purposes of Regresssion
1.

 

Describe association between Y and X’s
2.

 

Make predictions:
Interpolation:  making prediction within a range of X’s
Extrapolation:  making prediction outside a range of X’s

3.

 

To “adjust”

 

or “control for”

 

confounding variables
What is “Y”?

•

 

an outcome variable
•

 

‘dependent’

 

variable
•

 

‘response’
Type of regression depends on type of Y

•

 

continuous (linear regression)
•

 

binary (logistic regression)
•

 

time-to-event (Cox regression)
•

 

rare event or rate (poisson regression)



Some motivating examples

Example 1: Suppose we are interested in 
studying the relationship between fasting blood 
glucose (FBG) levels and the number hours per 
day of aerobic exercise. Let Y denote the fasting 
blood glucose level
•

 
Let X denote the number of hours of exercise

•
 

One may be interested in studying the relationship of 
Y and X

Simple linear regression can be used to quantify 
this relationship



Some motivating examples

Example 2: Consider expanding example 1 to include 
other factors that could be related FBG.
Let X1 denote hours of exercise
Let X2 denote BMI
Let X3 indicate if the person has diabetes
. . . (other covariates possible)
One may be interested in studying the relationship of all 
X′s on Y and identifying the “best” combination of factors
Note: Some of the X′s may correlated (e.g., exercise and 
bmi)
Multiple (or multivariable, not multivariate) linear 
regression can be used to quantify this relationship



Some motivating examples

Example 3: Myocardial infarction (MI, heart attack) is 
often a life-altering event
Let Y denote the occurrence (Y = 1) of an MI after 
treatment, let Y = 0 denote no MI
Let X1 denote the dosage of aspirin taken
Let X2 denote the age of the person
. . . (other covariates possible)
One may be interested in studying the relationship of all 
X′s on Y and identifying the “best” combination of factors
Multiple LOGISTIC regression can be used to quantify 
this relationship



More motivating examples

Example 4: This is an extension of Ex 3: Myocardial 
infarction. Let the interest be now on when the first
MI occurs instead of “if” one occurs.
Let Y denote the occurrence (Y = 1) of an MI after 
treatment, let Y = 0 denote no MI observed
Let Time denote the length of time the individual is 
observed
Let X1 denote the dosage of aspirin taken
. . . (other covariates possible)
Survival Analysis (which, in some cases, is a regression 
model) can be used to quantify this relationship of aspirin 
on MI



More motivating examples

Example 5:  Number of cancer cases in a city
Let Y denote the count (non-negative integer value) of 
cases of a cancer in a particular region of interest
Let X1 denote the region size in terms of “at risk”
individuals
Let X2 denote the region
. . . (other covariates possible)
One may be interested in studying the relationship of the 
region on Y while adjusting for the population at risk 
sizes
POISSON regression can be used to quantify this 
relationship



Brief Outline

Linear regression:  half semester (through spring 
break)
Logistic regression
Poisson regression
Cox regression (survival)
Hierarchical regression or ridge regression?



Linear Regression

Outcome is a CONTINUOUS variable
Assumes association between Y and X is a ‘straight line’
Assumes relationship is ‘statistical’ and not ‘functional’
•

 

relationship is not perfect
•

 

there is ‘error’

 

or ‘noise’

 

or ‘unexplained variation’

Aside:
•

 

I LOVE graphical displays of data
•

 

This is why regression is especially fun
•

 

there are lots of neat ways to show your data
•

 

prepare yourself for a LOT of scatterplots this semester



Graphical Displays

Scatterplots:  show associations between two variables 
(usually)
Also need to understand each variable by itself
Univariate data displays are important
Before performing a regresssion, we should
•

 

identify any potential skewness
•

 

outliers
•

 

discreteness
•

 

multimodality
Top choices for univariate displays
•

 

boxplot
•

 

histogram
•

 

density plot
•

 

dot plot



Linear regression example

The authors conducted a pilot study to assess the use of 
toenail arsenic concentrations as an indicator of 
ingestion of arsenic-containing water.  Twenty-one 
participants were interviewed regarding use of their 
private (unregulated) wells for drinking and cooking, and 
each provided a sample of water and toenail clippings. 
Trace concentrations of arsenic were detected in 15 of 
the 21 well-water samples and in all toenail clipping 
samples. 
Karagas MR, Morris JS, Weiss JE, Spate V, Baskett C, 
Greenberg ER. Toenail Samples as an Indicator of 
Drinking Water Arsenic Exposure. Cancer Epidemiology, 
Biomarkers and Prevention 1996;5:849-852.



Purposes of Regression

1.  Describe association
•

 

hypothesis: as arsenic in well water increases, level of arsenic

 

in 
nails also increases.  

•

 

linear regression can tell us
how much increase in nail level we see on average for a 1 unit 
increase in well water level of arsenic

2.  Predict
•

 

linear regresssion can tell us 
what level of arsenic we would expect in nails for a given level in 
well water.
how precise our estimate of arsenic is for a given level of well water

3.  Adjust
•

 

linear regression can tell us
what the association between well water arsenic and nail arsenic is 
adjusting for other factors such as age, gender, amount of use of 
water for cooking, amount of use of water for drinking.



Boxplot



Graphical Displays
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Histogram

Bins the data
x-axis represents variable values
y-axis is either
•

 
frequency of occurrence 

•
 

percentage of occurence
Visual impression can depend on bin width
often difficult to see details of highly skewed 
data



Histogram
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Histogram
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Density Plot

Smoothed density based on kernel density 
estimates
Can create similar issues as histogram
•

 
smoothing parameter selection

•
 

can affect inferences
Can be problematic for ‘ceiling’ or ‘floor’ effects



Density Plot
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Dot plot
My favorite for 
•

 
small datasets

•
 

when displaying data by groups
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And…the scatterplot
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Measuring the association between X and Y

Y is on the vertical
X predicts Y
Terminology:  
•

 
“Regress Y on X”

•
 

Y:  dependent variable, response, outcome
•

 
X:  independent variable, covariate, regressor, 
predictor, confounder

Linear regression a straight line
•

 
important!

•
 

this is key to linear regression



Simple vs. Multiple linear regresssion

Why ‘simple’?
•

 
only one “x”

•
 

we’ll talk about multiple linear regression later…
Multiple regression 
•

 
more than one “X”

•
 

more to think about:  selection of covariates
Not linear?
•

 
need to think about transformations

•
 

sometimes linear will do reasonably well



Association versus Causation

Be careful!
Association ≠ Causation
Statistical relationship does not mean X causes 
Y
Could be
•

 
X causes Y

•
 

Y causes X
•

 
something else causes both X and Y

•
 

X and Y are spuriously associated in your sample of data

Example:  vision and number of gray hairs



Basic Regression Model

Yi is the value of the response variable in the ith 
individual
β0 and β1 are parameters
Xi is a known constant; the value of the covariate in 
the ith individual
εi is the random error term
Linear in the parameters
Linear in the predictor

iii XY εββ ++= 10



Basic Regression Model

NOT linear in the parameters:

NOT linear in the predictor:
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Model Features

Yi is the sum of a constant piece and a random piece:
•

 

β0

 

+ β1

 

Xi

 

is constant piece (recall:  x is treated as constant)
•

 

εi

 

is the random piece
Attributes of error term
•

 

mean of residuals is 0:  E(εi

 

) = 0
•

 

constant variance of residuals

 

:  σ2(εi

 

) = σ2

 

for all i
•

 

residuals are uncorrelated:  cov(εi

 

, εj

 

) = 0 for all i, j; i ≠

 

j
Consequences
•

 

Expected value of response
E(Yi) = β0 + β1Xi
E(Y) = β0 + β1X

•

 

Variance of Yi

 

= σ2

•

 

Yi

 

and Yj

 

are uncorrelated



Probability Distribution of Y

For each level of X, there is a probability 
distribution of Y
The means of the probability distributions vary 
systematically with X.



Parameters

β0 and β1 are referred to as “regression 
coefficients”
Remember y = mx+b?
β1 is the slope of the regression line
•

 
the expected increase in Y for a 1 unit increase in X

•
 

the expected difference in Y comparing two 
individuals with X’s that differ by 1 unit

•
 

Expected?  Why?



Parameters

β0 is the intercept of the regression line
•

 
The expected value of Y when X = 0

•
 

Meaningful?
when the range of X includes 0, yes
when the range of X excluded 0, no

•
 

Example:
Y = baby’s weight in kg
X = baby’s height in cm
β0 is the expected weight of a baby whose height is 0 cm.



SENIC Data

Will be used as a recurring example
SENIC = Study on the Efficacy of Nosocomial Infection 
Control
The primary objective of the SENIC Project was to 
determine whether infection surveillance and control 
programs have reduced the rates of nosocomial 
(hospital-acquired) infection in the United States 
hospitals. 
This data set consists of a random sample of 113 
hospitals selected from the original 338 hospitals 
surveyed.
Each line of the data set has an ID number and provides 
information on 11 other variables for a single hospital. 
The data used here are for the 1975-76 study period.



SENIC Data



SENIC Simple Linear Regression Example

Hypothesis:  The number of beds in a given 
hospital is associated with the average length of 
stay.
Y = ?
X =  ?
Scatterplot
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Stata 
Regression 
Results

. regress los beds

Source |       SS       df       MS              Number of obs =     113
-------------+------------------------------ F(  1,   111) =   22.33

Model |  68.5419355     1  68.5419355           Prob > F =  0.0000
Residual |  340.668443   111  3.06908508           R-squared     =  0.1675

-------------+------------------------------ Adj R-squared =  0.1600
Total |  409.210379   112   3.6536641           Root MSE =  1.7519

------------------------------------------------------------------------------
los |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
beds |   .0040566   .0008584     4.73   0.000     .0023556    .0057576
_cons |   8.625364   .2720589    31.70   0.000     8.086262    9.164467

------------------------------------------------------------------------------
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Another Example:  Famous data

Father and sons heights data from Karl Pearson 
(over 100 years ago in England)
1078 pairs of fathers and sons 
Excerpted 200 pairs for demonstration
Hypotheses:
•

 
there will be a positive association between heights of 
fathers and their sons

•
 

very tall fathers will tend to have sons that are shorter 
than they are

•
 

very short fathers will tend to have sons that are taller 
than they are



Scatterplot of 200 records of father son data

Father's Height, Inches
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plot(father, son, xlab="Father's Height, Inches", ylab="Son's Height, Inches",
xaxt="n",yaxt="n",ylim=c(58,78), xlim=c(58,78))

axis(1, at=seq(58,78,2))
axis(2, at=seq(58,78,2))



Regression Results

> reg <- lm(son~father)
> summary(reg)

Call:
lm(formula = son ~ father)

Residuals:
Min       1Q   Median       3Q      Max 

-7.72874 -1.39750 -0.04029  1.51871  7.66058 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 39.47177    3.96188   9.963  < 2e-16 ***
father       0.43099    0.05848   7.369 4.55e-12 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 2.233 on 198 degrees of freedom
Multiple R-squared: 0.2152,     Adjusted R-squared: 0.2113 
F-statistic: 54.31 on 1 and 198 DF,  p-value: 4.549e-12 
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This is where the term “regression”
 

came from

Father's Height, Inches
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Aside:  Design of Studies

Does it matter if the study is randomized?  
observational?
Yes and no
Regression modeling can be used regardless
The model building will often depend on the nature of the 
study
Observational studies:  
•

 

adjustments for confounding
•

 

often have many covariates as a result
Randomized studies:
•

 

adjustments may not be needed due to randomization
•

 

subgroup analyses are popular and can be done via regression



Estimation of the Model

The Method of Least Squares
Intuition: we would like to minimize the residuals:

Minimize/maximize:  how to do that?
Can we minimize the sum of the residuals?

iii XY 10 ββε −−=



Least Squares

Minimize the distance between the fitted line and 
the observed data
Take absolute values?
Simpler?  Square the errors.
LS estimation:
•

 
Minimize Q:

∑
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Least Squares

Derivation
Two initial steps:  reduce the following
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Least Squares
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Least Squares
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