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A Method of Comparing the Areas

under Receiver Operating

Characteristic Curves Derived from

the Same Cases’

Receiver operating characteristic (ROC)
curves are used to describe and compare
the performance of diagnostic technology
and diagnostic algorithms. This paper re-
fines the statistical comparison of the
areas under two ROC curves derived
from the same set of patients by taking
into account the correlation between the
areas that is induced by the paired nature

of the data. The correspondence between
the area under an ROC curve and the Wil-
coxon statistic is used and underlying
Gaussian distributions (binormal) are as-

sumed to provide a table that converts the
observed correlations in paired ratings of
images into a correlation between the two
ROC areas. This between-area correlation
can be used to reduce the standard error
(uncertainty) about the observed differ-
ence in areas. This correction for pairing,
analogous to that used in the paired t-
test, can produce a considerable iflcrease
in the statistical sensitivity (power) of the
comparison. For studies involving multi-
pie readers, this method provides a mea-
sure of a component of the sampling van-
ation that is otherwise difficult to obtain.

Index term: Receiver operating characteristic curve

(ROC)
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S EVERAL questions dealing with comparative benefits for altemna-
tive diagnostic algorithms, diagnostic tests, or therapeutic regi-

mens have recently emerged in medicine. For example, how do we
know whether one diagnostic algorithm is better than another in
sorting patients into diseased and nondiseased groups? Whether the
addition of a new test or procedure to an established algorithm im-
proves its performance? Whether it matters who of several available
readers interprets a mammogram? Whether one type of hard-copy
unit in radiology is better than another? Whether reading a CT scan
in conjunction with the patient’s history allows a more accurate di-
agnosis than reading it without the history? The analyses of such
problems have started with construction of receiver operating char-
acteristic (ROC) curves (1-3). Generally these analyses have used as

cutoff points either different posterior probabilities on a continuous

scale or different thresholds on a discrete rating scale. The latter ap-
proach has been particularly popular in radiology.

Major gaps in the understanding of statistical properties of ROC
curves have limited their usefulness, especially for questions in-
volving comparisons of curves based on the same sample of subjects
or objects. These comparative situations contrast with those involving
a single data set and a single ROC curve. In such cases, the investigator
generally only needs to know that a single modality or diagnostic
approach has “poor”, “moderate”, or “good” accuracy, and the loca-
tion of the ROC curve gives a rough assessment. However, when a
comparison of two algorithms or modalities is relevant, more formal

statistical criteria are needed in order to judge whether observed
differences in accuracy are more likely to be random than real. Thus
far these criteria have not been fully developed for ROC curves.

In a recent paper (4) we dealt with one popular accuracy index that
can be derived from and used as a summary of the ROC curve. We
showed that the relationship of the area under the ROC curve to the
Wilcoxon statistic could be used to derive its statistical properties, such
as its standard error (SE) and the sample sizes required to measure the

area with a prespecified degree of precision (reliability) and to provide
a desired level of statistical power (low type II error) in comparative
experiments. This paper extends our statistical analysis to another

large class of situations, where the two or more ROC curves are gen-
erated using the same set of patients. In these situations, it is map-
propriate to calculate the standard error of the difference between

two areas (Area1 and Area2) as

SE (Area1 - Area2) s/�E�(Ar#{234}ai)-l-SE�(Ar#{234}a2) (1)

since Area1 and Area2 are likely to be correlated. This correlation is
likely to be positive; if the vagaries of random sampling of cases
produce a higher/lower than expected accuracy index for one mo-
dality (e.g., if the sample consisted of a larger than usual number of
easy/difficult cases), then the accuracy of the second modality will
probably also be correspondingly higher/lower than one would ex-
pect. In other words, while the two indices may fluctuate indepen-
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dently by amounts SE1 and SE2 in sep-
arate samples, they will tend to fluc-
tuate in tandem when derived from a
single sample.

In this paper we have developed an
approach to take account of this corre-
lation. In brief, we indicate that the
relevant standard error for such com-
parisons is not that shown in Equation
1 but rather

SE(Ar#{234}a1- Area2)

= s/�E�(Ar#{234}ai) + SE2(Ar#{234}a2)

-2rSE(Ar#{234}a1) SE(Ar#{234}a2) (2)

where r is a quantity representing the
correlation introduced between the
two areas by studying the same sample
of patients. This paper reviews the
calculations for comparing the ROC
curves of two modalities and illustrates
this new approach using data from a
series of experiments involving phan-

toms.

METHODS

The general approach to assessing
whether the difference in the areas
under two ROC curves derived from
the same set of patients is random or
real is to calculate a critical ratio z, de-
fined as

- A1-A2 3

z - VSE� + SE� 2rSE1SE2 �

where � and SE1 refer to the observed
area and estimated standard error of
the ROC area associated with modality
1; where A2 and SE2 refer to corre-
sponding quantities for modality 2; and
where r represents the estimated cor-
relation between � and A2.2 This
quantity z is then referred to tables of
the normal distribution and values of
z above some cutoff, e.g. ,z � 1 .96, are
taken as evidence that the “true” ROC
areas are different. The importance of
introducing the 2rSE1SE2 term in the
above equation is obvious: failure to
subtract out from the sampling van-
ability those fluctuations that the

paired design has already eliminated
will leave the denominator of Equation
3 too large and z too small, thereby re-
ducing the chance of detecting a dif-
ference between two modalities.

Calculating Areas

Areas under ROC curves can be ob-

2 � we will see later, the SE of an estimated

area depends on the magnitude of the underlying
or “true” area. When calculating z to test the null
hypothesis that this underlying area is the same

for both modalities, one should equate SE5 and
SE,., calculating them both from a common esti-

mate of the area. In this case the denominator
becomes �2SE�(1 - r) or SE �2(1 - r).

tamed in three ways: (i) by the trape-
zoidal rule; (ii) as output from the
Dorfman and Alf maximum likelihood
estimation program (5); or (iu) from the
slope and intercept of the original data
when plotted on binormal graph paper
(3). As indicated in our companion
paper (4) the trapezoidal approach
systematically underestimates areas.
Because the Dorfman and AIf approach

is becoming readily accessible to those
interested in this area, we will calculate
areas using this approach. (For those
limited to graphical methods, the area
can be derived from the slope and in-
tercept according to the rule Area
Percentage of Gaussian distribution to
left of ZA ‘ where ZA Inter-

cept/�1 + slope2).

Calculating Standard Errors

The standard errors associated with
areas can be obtained in three ways: (i)
as output directly from the Dorfman
and Alf maximum likelihood estima-
tion program; (ii) from the variance of

the Wilcoxon statistic as illustrated in
detail in Reference 4; or (iii) from an
approximation to the Wilcoxon statistic
by making an assumption, shown to be
conservative (compared with assuming
a Gaussian-based ROC curve), that the
underlying signal (diseased) and noise
(nondiseased) distributions are expo-
nential in type (4). We will use the
standard errors estimated from the
Dorfman and Alf program.

Calculating the Correlation
Coefficient, r, Between Areas

Two intermediate correlation coef-
ficients are required, which are then
converted into a correlation between

1 and A2 via a table that we supply
below. The first is rN, the correlation
coefficient for the ratings given to im-
ages from nondiseased patients by the
two modalities. The second is rA � the
correlation coefficient for the ratings
of diseased patients imaged by the two
modalities. Each of these can be calcu-
lated in traditional ways using either
the Pearson product-moment correla-
tion method or the Kendall tau. The
former approach is usually used for
results derived from an interval scale
whereas the latter is more appropriate
for results obtained from an ordinal
scale. ROC curves in radiology are de-
rived from ordinal scale data and
therefore we have used the Kendall tau
for calculating rN and rA. Standard
statistical packages (e.g., SPSS, SAS)

provide tau; when the number of rat-
ing categories is small, however, say
four or less, the calculation can also be
performed manually.

Once the correlations between the

ratings (rN among the normals, rA
among the abnormals) are obtained, it
is necessary to calculate the correlation
that they induce between the two areas

1 and A,. for ease of notation we have
called this r (without any subscript).
This is the coefficient present in
Equations 2 and 3. Tabulation of r
(TABLE I) is the fundamental contribu-
tion of this papers; therefore, in our
subsequent example we will illustrate
its use.

Experimental Data for
Illustrative Examples

We studied 1 12 phantoms that were
specially constructed to evaluate the
accuracy of two different computer al-
gorithms used in image reconstruction
for CT. Fifty-eight of these phantoms
were of uniform density and were
designated “normal”; the remaining 54

contained an area of reduced density to
simulate a lesion and were designated
“abnormal”. Two images of each
phantom were reconstructed using the
two different algorithms, which we
will refer to as modality 1 and modality
2. A single reader read each image and
rated it on a 6-point scale: 1 = Defi-
nitely Normal; 2 Probably Normal;
3 = Possibly Normal; 4 Possibly Ab-
normal; 5 = Probably Abnormal; 6
Definitely Abnormal. From the re-
sulting data, we constructed two ROC
curves. The data were submitted to the
Dorfman and Alf maximum likelihood
program to produce areas under the
ROC curves and standard errors.

RESULTS

Our results will be divided into two
parts. First, the analysis of the example
involving CT phantoms will be illus-
trated. Then, in order to verify that the
z statistic performs correctly, results of

several simulations will be summa-
rized.

CT Phantom Example

The basic data are presented in the
Appendix, along with the calculations

produced from them. The areas under
the ROC curves were 89.45% (SE 3.0%)
and 93.82% (SE 2.6%). The (Kendall tau)
correlations between the paired ratings
were rN 0.39 (nondiseased patients)
and rA 0.60 (diseased patients), giv-
ing an “average” correlation between
the ratings of 0.50. With this average
correlation of 0.50 and with an average
area of (89.45 + 93.82)/2 91.64, TABLE

3 Mathematical derivation available upon re-
quest.
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I indicates that the correlation r be-
tween areas is approximately 0.40.

Equation 3 was then used to calculate

the critical ratio z in order to test the
null hypothesis that the observed dif-
ference between observed areas was
merely a result of random sampling.
Using the above data

z = (0.9382 - 0.8945)/

�/O�O�z+ 0.0262 2(0.4)(0.03)(0.026)

= 0.0437/0.0309 = 1.41

As mentioned earlier, one might av-
erage the two areas to obtain a common
area of 0.9164, and use the formula in
Reference 4 to predict each of the
standard errors as 0.0281; using 0.0281
���/2(1 - 0.4) = 0.0308 in the denomi-
nator of Equation 3 yields an almost
identical z value of 1.42.

If we have reason to believe a priori
that modality 2 is likely to be better
than modality 1 and are only interested
in improvements, then a one-tailed test
is appropriate. The Gaussian distribu-
tion indicates that a value of 1.41 or
higher should occur roughly once in
every 13 samples (p = 0.079); this evi-
dence suggests that the observed dif-

ference may not be random. This con-
trasts with the weaker inference that
would be drawn from a critical ratio of
1.10 (or a p value of 0.136 or 1 in 7) that
would have been calculated had the
correlation between areas been as-
sumed to be equal to zero (in other
words, had we failed to take into ac-
count the increased sensitivity induced

by studying the same set of patients
with both modalities). If we had no a
priori interest in one particular direc-
tion, then a two-tailed test would have
been appropriate.

TABLE I: Correl ation Coefficients*

Average
Correlation

between

Ratingst

Average Area�

.700 .725 .750 .775 .800 .825 .850 .875 .900 .925 .950 .975

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02
0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.02
0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.04 0.03
0.10 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.04
0.12 0.11 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.08 0.08 0.07 0.05
0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.10 0.09 0.08 0.06
0.16 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.11 0.11 0.09 0.07
0.18 0.16 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.12 0.11 0.09
0.20 0.18 0.18 0.18 0.17 0.17 0.17 0.16 0.15 0.15 0.14 0.12 0.10
0.22 0.20 0.20 0.19 0.19 0.19 0.18 0.18 0.17 0.16 0.15 0.14 0.11
0.24 0.22 0.22 0.21 0.21 0.21 0.20 0.19 0.19 0.18 0.17 0.15 0.12
0.26 0.24 0.23 0.23 0.23 0.22 0.22 0.21 0.20 0.19 0.18 0.16 0.13
0.28 0.26 0.25 0.25 0.25 0.24 0.24 0.23 0.22 0.21 0.20 0.18 0.15
0.30 0.27 0.27 0.27 0.26 0.26 0.25 0.25 0.24 0.23 0.21 0.19 0.16
0.32 0.29 0.29 0.29 0.28 0.28 0.27 0.26 0.26 0.24 0.23 0.21 0.18
0.34 0.31 0.31 0.31 0.30 0.30 0.29 0.28 0.27 0.26 0.25 0.23 0.19
0.36 0.33 0.33 0.32 0.32 0.31 0.31 0.30 0.29 0.28 0.26 0.24 0.21
0.38 0.35 0.35 0.34 0.34 0.33 0.33 0.32 0.31 0.30 0.28 0.26 0.22
0.40 0.37 0.37 0.36 0.36 0.35 0.35 0.34 0.33 0.32 0.30 0.28 0.24
0.42 0.39 0.39 0.38 0.38 0.37 0.36 0.36 0.35 0.33 0.32 0.29 0.25
0.44 0.41 0.40 0.40 0.40 0.39 0.38 0.38 0.37 0.35 0.34 0.31 0.27
0.46 0.43 0.42 0.42 0.42 0.41 0.40 0.39 0.38 0.37 0.35 0.33 0.29
0.48 0.45 0.44 0.44 0.43 0.43 0.42 0.41 0.40 0.39 0.37 0.35 0.30
0.50 0.47 0.46 0.46 0.45 0.45 0.44 0.43 0.42 0.41 0.39 0.37 0.32
0.52 0.49 0.48 0.48 0.47 0.47 0.46 0.45 0.44 0.43 0.41 0.39 0.34
0.54 0.51 0.50 0.50 0.49 0.49 0.48 0.47 0.46 0.45 0.43 0.41 0.36
0.56 0.53 0.52 0.52 0.51 0.51 0.50 0.49 0.48 0.47 0.45 0.43 0.38
0.58 0.55 0.54 0.54 0.53 0.53 0.52 0.51 0.50 0.49 0.47 0.45 0.40
0.60 0.57 0.56 0.56 0.55 0.55 0.54 0.53 0.52 0.51 0.49 0.47 0.42
0.62 0.59 0.58 0.58 0.57 0.57 0.56 0.55 0.54 0.53 0.51 0.49 0.45
0.64 0.61 0.60 0.60 0.59 0.59 0.58 0.58 0.57 0.55 0.54 0.51 0.47
0.66 0.63 0.62 0.62 0.62 0.61 0.60 0.60 0.59 0.57 0.56 0.53 0.49
0.68 0.65 0.64 0.64 0.64 0.63 0.62 0.62 0.61 0.60 0.58 0.56 0.51
0.70 0.67 0.66 0.66 0.66 0.65 0.65 0.64 0.63 0.62 0.60 0.58 0.54
0.72 0.69 0.69 0.68 0.68 0.67 0.67 0.66 0.65 0.64 0.63 0.60 0.56
0.74 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.67 0.66 0.65 0.63 0.59
0.76 0.73 0.73 0.72 0.72 0.72 0.71 0.71 0.70 0.69 0.67 0.65 0.61
0.78 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.72 0.71 0.70 0.68 0.64
0.80 0.77 0.77 0.77 0.76 0.76 0.76 0.75 0.74 0.73 0.72 0.70 0.67
0.82 0.79 0.79 0.79 0.79 0.78 0.78 0.77 0.77 0.76 0.75 0.73 0.70
0.84 0.82 0.81 0.81 0.81 0.81 0.80 0.80 0.79 0.78 0.77 0.76 0.73
0.86 0.84 0.84 0.83 0.83 0.83 0.82 0.82 0.81 0.81 0.80 0.78 0.75
0.88 0.86 0.86 0.86 0.85 0.85 0.85 0.84 0.84 0.83 0.82 0.81 0.79
0.90 0.88 0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.85 0.84 0.82

S Correlation coefficient r between two ROC areas � and 2 as a function of average correlation

between ratings (rows) and average area (columns).
t (rN + TA)!2.

t (A1 + A2)/2.

General Performance of the
Paired Test

A good statistical test should mdi-
cate a difference when one is really
present, but it should minimize in a
predictable way the number of in-
stances in which a difference is said to
exist when, in fact, none does exist
(high sensitivity and specificity). To
determine these characteristics for this

new statistical test, we examined its
diagnostic performance over a range of
simulated situations, using methods
analogous to those used by Pollack and
Hsieh (6) and Metz and Kronman (7).

In order to calculate the specificity,
400 simulated analyses were performed
for each of several combinations of
underlying ROC areas and correla-
tions. The tabulated distributions of the
test statistic z obtained from these
various simulations were for all prac-
tical purposes indistinguishable from
Gaussian ones and had standard den-

vations acceptably close to 1 . The
false-positive rates were low, and close
to what one should expect. Specifically,
among the 4,800 trials (12 combina-
tions each run 400 times) the average
proportion of z values above 2.0 or
below -2.0 (values often taken as in-
dicating a statistically significant dif-
ference) was 5.1%, i.e., a specificity of
94.9%. In a perfect Gaussian distnibu-
tion, this would have been 4.6%, i.e., a
specificity of 95.4%.

Evaluation of the sensitivity (power)
for this statistic required comparison of
two modalities with different ROC
areas. For this purpose, sets of 200 ex-
peniments were simulated from vary-
ing correlation coefficients. The per-
formance was evaluated by tabulating
the percentage of paired and unpaired
tests indicating a significant difference.
Over four combinations of correlations
and baseline accuracies, one could
project that the paired test would raise

a 50% sensitivity (expected from an
unpaired analysis) to 60-75%.

DISCUSSION

In this investigation we have de-
scnibed a method of comparing the
areas under two ROC curves derived
from the same sample of patients. Two
immediate results are apparent. We
have shown that the comparison can be
made more sensitive if the investigator
takes into account the smaller sampling
variability of the difference in areas
induced by studying each patient
twice. Second, our data can be extrap-
olated to indicate the statistical econo-
my that emerges from this kind of ex-
perimental design and analysis. We
discuss these points in turn.

The larger the correlation between
the areas, the more sensitive the paired
z test will be. This observation may
explain why a-number of studies using



842 #{149}Radiology September 1983

an unpaired z test that assumed the two
areas were statistically independent
failed to find a significant difference
between the modalities. The degree of

correlation expected between ROC
areas obtained with different modali-
ties varies considerably depending
upon the types of modalities involved.
For example, if the two images are ob-
tamed from the same machine with
two different settings or if a radiologist
reads a CT scan with and without ex-
tensive clinical history, high correla-
tion can be expected. In this study in-
volving different reconstruction algo-
nithms with CT, the correlation be-
tween the paired ratings of abnormal
phantoms was 0.60 and between paired
ratings of normal phantoms was 0.39.
We have observed similar results in a
study of ours (8) involving the inter-
pretation of CT studies of the head
with and without extensive clinical
history. On the other hand, when the
only common denominator in the
comparison is the patient, the correla-

tions are likely to be weaker. For ex-
ample, a study by Alderson et al.(9)
comparing CT, ultrasound, and nuclear

medicine imaging in the diagnosis of
liver metastases found considerably
lower rating-pair correlations (0.36 in
abnormal patients and 0.28 in normal
patients). Obviously, in the latter sit-
uation the gains from using a paired
rather than an unpaired analysis are
smaller.

Two other points must be made
about correlation coefficients. First, in
general we have noted that whatever
the modalities under study, the matings
tend to be less correlated in the non-
diseased patients than in the diseased
patients. This suggests that in diag-
nostic imaging agreement tends to be
greater if there is in fact underlying
disease, and less if there is not. Second,
if an investigator knew a priori that the
correlations between the modalities
under study were small, then an ex-
penimental design that did not involve
pairing could be used, provided that it

was no more difficult to separate
(diagnose) the patients studied by one
modality than it was to diagnose those
studied by the other modality.

The statistical economy resulting
from this new statistical test is large.
Statistical economy relates to the
question of how many more patients
are required in an unpaired design
then in a paired design to achieve the
same sensitivity or statistical power. A
comparison of Equations 1 and 2 pro-
vides an answer to this question. Each
of the standard errors is inversely
proportional to the square root of the

sample size n . Also, the equations can
be simplified by assuming that the
standard errors of the two areas are

equal; in this case, Equation 2 differs
from Equation 1 only in the presence of
the factor (1 - r). When the sample
sizes associated with the two tech-
niques are arranged so that the paired
and unpaired tests produce the same z

value, then a simple algebraic identity
emerges:

or

flu = fl�/(1 - r)

flp = (1 - r)fl�

where n� and fl� are the numbers of
patients per modality in the respective
unpaired and paired designs4. For ex-
ample, if r is anticipated to be roughly
0.3 and an unpaired design called for
100 patients per modality, then a paired
design should require only 70 per
modality. Thus the total number of
images read would be 140 rather than
200. This efficiency is even more im-
portant if the limiting factor is the
number of available patients with a
proved outcome (rather than the
number of images a reader can be ex-
pected to read), since the total of 140

paired images is obtained from just 70
patients, rather than from 200 patients

in the unpaired design. The investi-
gator must weigh very carefully the
practical and statistical issues, keeping
in mind that if one uses an unpaired
design, one must establish (through
case matching and/or random alloca-
tion) that the method of constructing
two independent samples of subjects
does not give one modality an inbuilt
advantage.

The discussion thus far has centered
on a rather restricted design where just

one reader read the images generated
by the two modalities being compared.
The statistical test simply asked the
question: if this one reader read an in-
finite rather than a finite number of
images, would his/her accuracy be
comparable in both modalities?5
Clearly, a more general question is
relevant: how do the modalities com-
pare over many readers?

For the sake of completeness, we
refer briefly to this problem of multiple
readers and readings in each modality.
This situation has been discussed ex-
tensively by Swets and Pickett (10); our
main reasons for mentioning it here are
to draw readers’ attention to a very
extensive treatment of the design and
analysis of imaging experiments, and
to point out that our method of ob-

4 This simple relation allows the user to mul-
tiply the sample sizes in TABLE III of our first

publication (4) by the appropriate (1 - r)and use
them for paired designs.

5 One could also use the z test to compare two

specific readers on one modality.

taming r now allows the methods
therein to be used with greater sensi-
tivity. This is best appreciated by re-
producing the formula that the authors
give (Equation 2, Chapter 3) for the
standard error of a difference between
the value of an accuracy index (such as
the area under an ROC curve) for one
modality (averaged over 1 readers, each
reading each image m times) and the
value of the same accuracy index (again
averaged over readers and readings)
for a second modality. The expression
involves three sources of variation: S�,
the variation in the index due to dif-
ferences in mean difficulty of cases
from case sample to case sample; S�,
between-reader variance due to dif-
ferences in diagnostic capability from
reader to reader; and � within-reader
variance due to differences in an mdi-
vidual reader’s diagnoses of the same
case in repeated occasions. It also in-
volves two correlation coefficients: r�
to denote the correlations introduced
by using similar (or even the same)
cases with both modalities and rb� to
denote correlations between the accu-
racy index obtained by using matched
(or possibly the same) readers. With
this notation, the formula becomes

SE (differefice)

�J2IS�(1 - r�) + S�(1 - rj,�)/l + S��/lm�

The authors describe fully via several
worked examples how to evaluate each
of these terms. They point out, how-
ever, that the estimation of the two
components r� and S� creates prob-
lems. First, if m 1, i.e., if each image
is read just once, then S�. and S� are
not separable, and one is forced to
overestimate the SE. The second, and
more serious, problem is that if m 1
and if one does not have a large num-
ben of cases, enough (for example) to
split them into a number of subsamples
and fit an ROC curve to each, one is
unable to estimate r�. In such cases, the
authors explain that one has no alter-
native but to assume r� 0, thereby
giving up any benefits attainable from
case matching.

The method we have presented here
means that if one uses the area under
the ROC curve as an index of accuracy,
one is not forced to assume r� = 0. The
quantity we have called r, which is
obtainable via TABLE I from the area
and from the correlations between
ratings, is the same quantity �
mentioned in Equation 5, Chapter 4 of
Swets and Pickett (8)6. The interested

6 If m > 1, one can correct the quantity �

(obtained from TABLE I) for the “attenuation”
produced by S�, and estimate the “true” corre-

lation r� introduced by using similar(or the same)
cases.



Rating* Rating* with Modality 2
with Normal Phantoms Abnormal Phantoms

Modalityl 1 2 3 4 5 6 Total 1 2 3 4 5 6 Total

1 9 3 - - - - 12 - - 1 - - - 1
2 17 9 2 - - - 28 1 - 2 - - - 3
3 3 4 1 - - - 8 1 1 1 3 - - 6
4 1 2 2 1 - - 6 1 1 1 9 1 - 13
5 1 1 - 2 - - 4 - - - 7 10 5 22
6 4 5 9

Total 31 19 5 3 - - 58 3 2 5 19 15 10 54

* Ratings: from 1 Definitely Normal to 6 Definitely Abnormal.

(b) Correlation between ratings (Kendall
tau): modality 1 vs. modality 2 TA = 0.60

modality 1 vs. modality 2 TN 0.39 average correlation 0.50

(c) ROC analysis:

Rating Standard

Modality 1 2 3 4 5 6 Slope Intercept ZA Area Error (Area)

Modality 1
Normal 12 28 8 6 4 - 0.945 1.72 1.25 0.8945 0.030
Abnormal 1 3 6 13 22 9

Modality 2
Normal 31 19 5 3 - - 0.467 1.70 1.54 0.9382 0.026
Abnormal 3 2 5 19 15 10

(d) Test statistic: z 0.0437/�0.0302 + 0.0262 2(0.040)(0.030)(0.026) 1.41
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reader can consult that reference for
full details on how it is used.

In summary, then, we have provided
a method for estimating the correlation
between the areas under two ROC
curves derived from the same sample
of patients and have shown how to use
this correlation to perform a more
sensitive comparison of the areas.
Moreover, this provides an item that
was previously only guessed at, or un-
denestimated, in studies of multiple
readers.
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APPENDIX
Ratings given to two images of each of

1 12 phantoms, together with calculations

(a) Basic data:

Difference in areas 0.0437.
Average area 0.9146.
Correlation between areas 0.40.

of z test to test whether one modality sub-

tended a greater ROC area than the other:




