setwd("I:\\classes\\regression 2009\\data") data <- read.csv("senicfull.csv") data$logLOS <- log(data$LOS) pairs(~INFRISK+BEDS+logLOS, data=data, pch=16) # adjusted variable plot approach # look at the association between INFRISK and logLOS, # adjusting for BEDS reg.xy <- lm(logLOS ~ BEDS, data=data) res.xy <- reg.xy$residuals reg.xz <- lm(INFRISK ~ BEDS, data=data) res.xz <- reg.xz$residuals plot(res.xz, res.xy, pch=16) reg.res <- lm(res.xy ~ res.xz) abline(reg.res, lwd=2) reg.infrisk.beds <- lm(logLOS ~ BEDS + INFRISK, data=data) ############ # why NURSE is not associated, after adjustment for BEDS? reg.nurse <- lm(logLOS ~ NURSE, data=data) reg.nurse.beds <- lm(logLOS ~ NURSE + BEDS, data=data) reg.xy <- lm(logLOS ~ BEDS, data=data) res.xy <- reg.xy$residuals reg.xz <- lm(NURSE ~ BEDS, data=data) res.xz <- reg.xz$residuals plot(res.xz, res.xy, pch=16) reg.res <- lm(res.xy ~ res.xz) abline(reg.res, lwd=2) ####################### # what about the other way? what about why BEDS is assoc after adjustment # for NURSE? reg.xy <- lm(logLOS ~ NURSE, data=data) res.xy <- reg.xy$residuals reg.xz <- lm(BEDS ~ NURSE, data=data) res.xz <- reg.xz$residuals plot(res.xz, res.xy, pch=16) reg.res <- lm(res.xy ~ res.xz) abline(reg.res, lwd=2) reg.nurse.beds <- lm(logLOS ~ NURSE + BEDS, data=data) ############### reg.infrisk.beds <- lm(logLOS ~ BEDS + INFRISK, data=data) summary(reg.infrisk.beds) data$beds100 <- data$BEDS/100 reg.infrisk.beds100 <- lm(logLOS ~ beds100 + INFRISK, data=data) summary(reg.infrisk.beds100) data$beds100 <- data$BEDS/100 reg.infrisk.beds <- lm(LOS ~ beds100 + INFRISK, data=data) summary(reg.infrisk.beds)