Taking new agents to the clinic: phase I study design

Elizabeth Garrett-Mayer, PhD Associate Professor Director of Biostatistics, Hollings Cancer Center

Outline

Goals of phase I studies
"3+3" design
CRM
Bayesian model
Variations

Other adaptive approaches

Phase I \rightarrow Dose finding

- Traditional goal: Find the highest dose with <u>acceptable</u> <u>toxicity</u>
- New goals:
 - find dose with sufficient effect on biomarker
 - find dose with <u>acceptable toxicity</u> and high efficacy
 - Find dose with <u>acceptable toxicity</u> in the presence of another agent that may also be escalated.

Acceptable toxicity

• What is acceptable rate of toxicity?

- 20%?
- 30%?
- 50%?
- What is toxicity????
 - Standard in cancer: Grade 4 hematologic or grade 3/4 non-hematologic toxicity
 - Always?
 - Does it depend on reversibility of toxicity?
 - Does it depend on intensity of treatment?
 - o Tamoxifen?
 - Chemotherapy?

Phase I study design

• "Standard" Phase I trials (in oncology) use what is often called the '3+3' design (aka 'modified Fibonacci'):

Treat 3 patients at dose K
1. If 0 patients experience dose-limiting toxicity (DLT), escalate to dose K+1
2. If 2 or more patients experience DLT, de-escalate to level K-1
3. If 1 patient experiences DLT, treat 3 more patients at dose level K
A. If 1 of 6 experiences DLT, escalate to dose level K+1
B. If 2 or more of 6 experiences DLT, de-escalate to level K-1

- Maximum tolerated dose (MTD) is considered highest dose at which 1 or 0 out of six patients experiences DLT.
- Doses need to be <u>pre-specified</u>
- Confidence in MTD is usually poor.

Should we use the "3+3"?

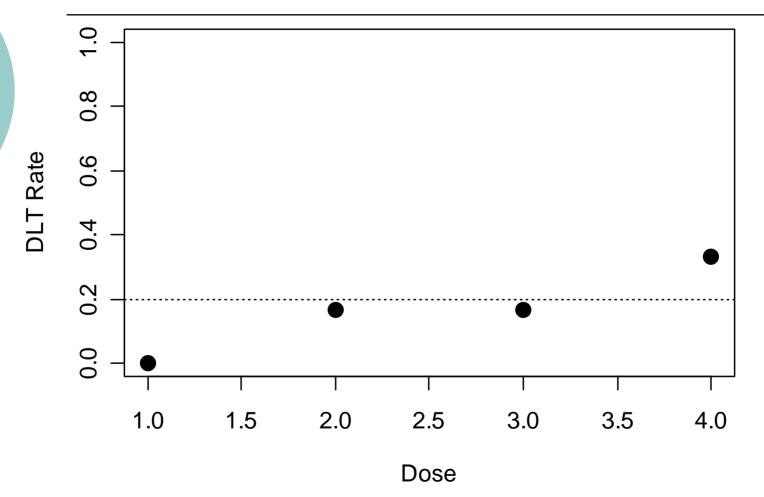
- It is terribly imprecise and inaccurate in its estimate of the MTD
- Why?
 - MTD is not based on all of the data
 - Algorithm-based method
 - Ignores rate of toxicity!!!
- Likely outcomes:
 - Choose a dose that is too high
 - Find in phase II that agent is too toxic.
 - Abandon further investigation or go back to phase I
 - Choose a dose that is too low
 - Find in phase II that agent is ineffective
 - Abandon agent

Two examples:

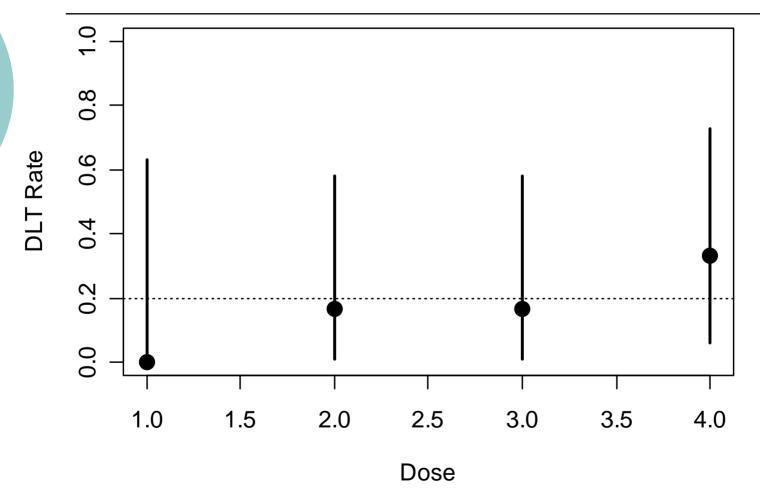
Example 1: total N=21

	Cohort 1	Cohort 2	Cohort 3	Cohort 4	Cohort 5	Cohort 6	Cohort 7
Dose	1	2	2	3	3	4	4
DLTs	0/3	1/3	0/3	1/3	0/3	1/3	1/3

Observed Data



Observed Data: with 90% CIs

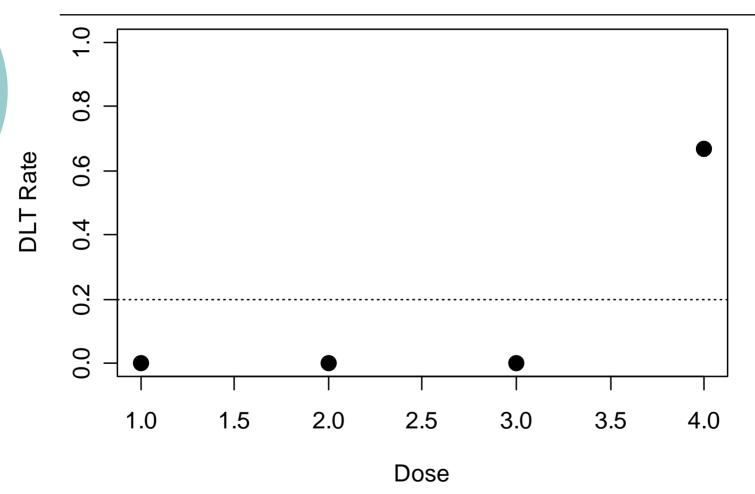


Example 2:

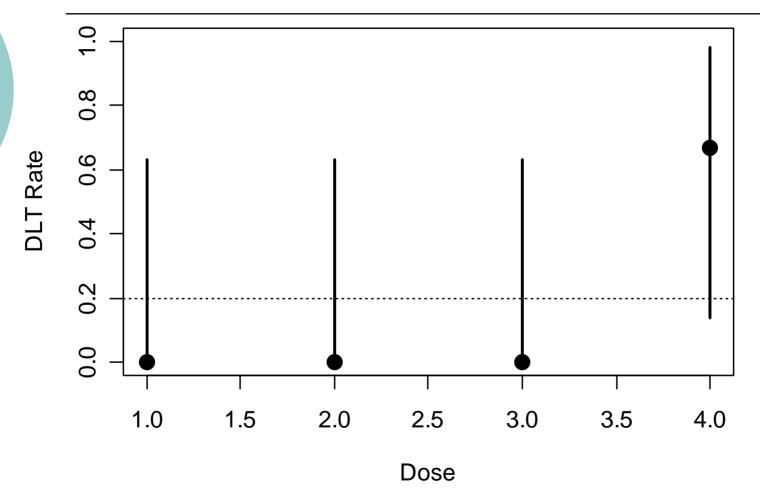
Example 2: total N=12

	Cohort 1	Cohort 2	Cohort 3	Cohort 4
Dose	1	2	3	4
DLTs	0/3	0/3	0/3	2/3

Observed Data



Observed Data: with 90% CIs



Why is the 3+3 so popular?

- People know how to implement it
- o "we just want a quick phase I"
- o It has historic presence
- FDA (et al.) accept and promote it
- There is a level of comfort from the approach
- The "better" approaches are too statistical(!)

USE A SMARTER DESIGN!

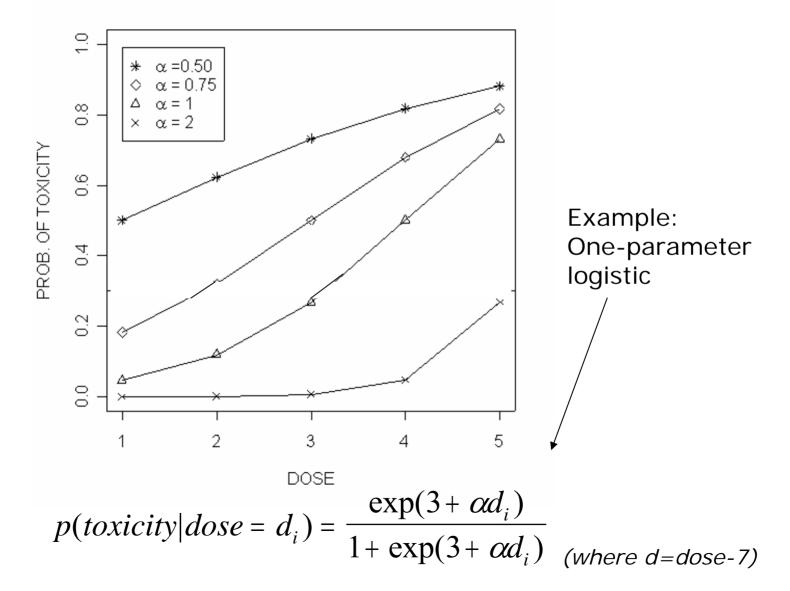
- Phase I is the most critical phase of drug development!
- What makes a good design?
 - Accurate selection of MTD
 - o dose close to true MTD
 - o dose has DLT rate close to the one specified
 - Relatively few patients in trial are exposed to toxic doses
- Why not impose a statistical model?
- What do we "know" that would help?
 - Monotonicity
 - Desired level of DLT

One "novel" approach: Continual Reassessment Method (CRM)

- Allows statistical modeling of optimal dose: dose-response relationship is assumed to behave in a certain way
- Can be based on "safety" or "efficacy" outcome (or both).
- Design searches for best dose given a desired toxicity or efficacy level and does so in an efficient way.
- This design REALLY requires a statistician throughout the trial.
- ADAPTIVE

CRM

- Originally devised by O'Quigley, Pepe and Fisher (1990) where dose for next patient was determined based on toxicity responses of patients previously treated in the trial
- Purely Bayesian design
 - Choose a mathematical model (likelihood)
 - Choose a prior distribution
 - Estimate the posterior distribution of parameters of interest
- Find dose that is most consistent with desired DLT rate



What are the goals?

- 1. Find alpha
 - What is the alpha that is most consistent with the model?
 - Recall: Bayesian
 - o Prior on alpha
 - o Estimate likelihood
 - o Find "best" alpha using posterior
- o 2. Find the dose for the next patient
 - After alpha is estimated
 - Plug alpha "hat" in model
 - Find dose that is consistent with desired DLT rate

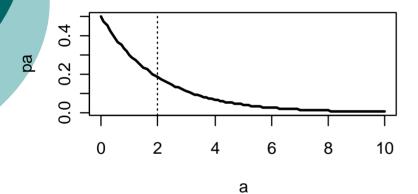
Prior

O VERY IMPORTANT

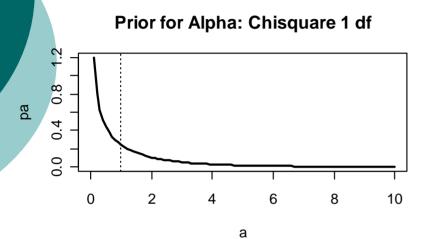
- Prior has large impact on behavior early in the trial
- But, what if you choose a 'vague' prior?
 - 'vague' in the sense of strength of information?
 - 'vague' in the sense of the most likely candidate?

Selecting prior (assume desired DLT rate = 0.20)





Reconsidered prior:



OK: so, start at dose=2.7

o Then what?

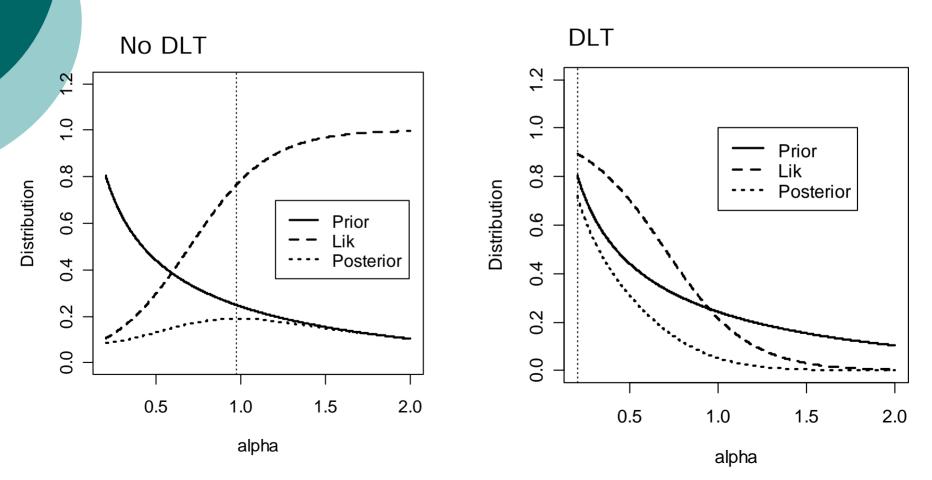
- See how first patient does
- o Two options
 - 1. no DLT
 - 2. DLT
- Use this information: combine prior and likelihood (based on N=1)
 - $\alpha_{noDLT} = 0.97$
 - $\alpha_{DLT} = 0.012$

Recall:

- o posterior = prior x likelihood x constant
- On following pages, the distributions are NOT normalized for the constant
- Relative heights are NOT important,
- Shapes of curves ARE important

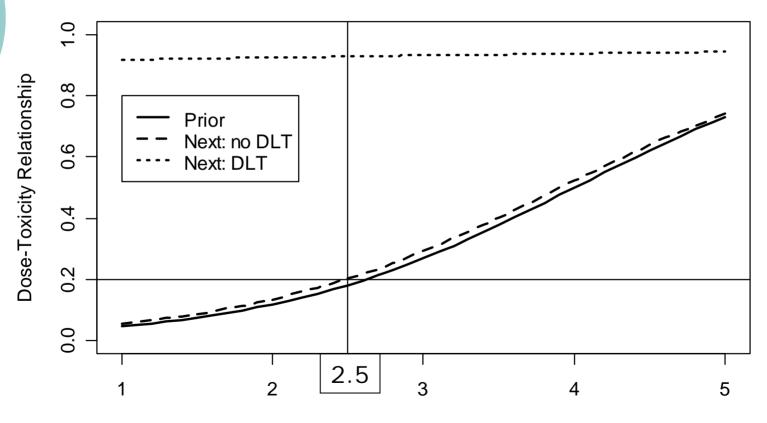
Is this what we would expect?

We've observed data on ONE patient. These are the possible results:



Dose for next patient?

Find dose that is consistent with DLT rate of 20%



Dose

Why?

• Prior choice:

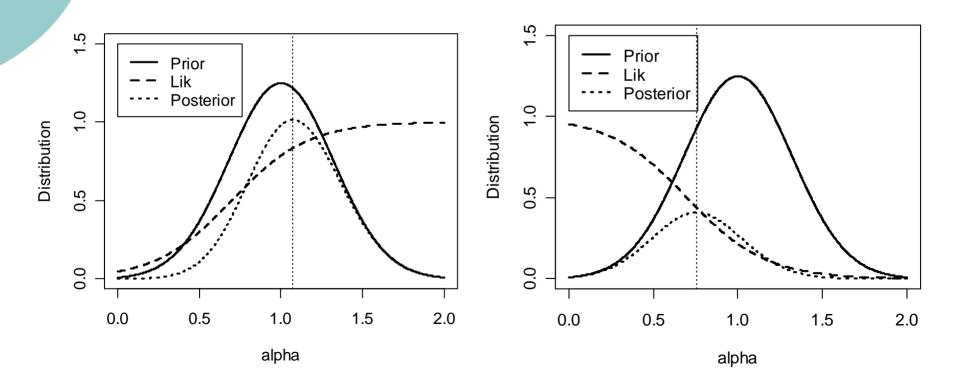
- Too conservative: Favors small values (i.e., high toxicity)
- Not informative enough(!)
- Want to be conservative BUT
 - Need to check behavior!
 - When a DLT occurs:
 - We should decrease, but not go so low as to stop trial after 1 DLT
 - When a patient has no DLT:
 - \circ We should increase the dose
 - If prior is too conservative, we may still decrease after a 'success'

Need to spend time on the design

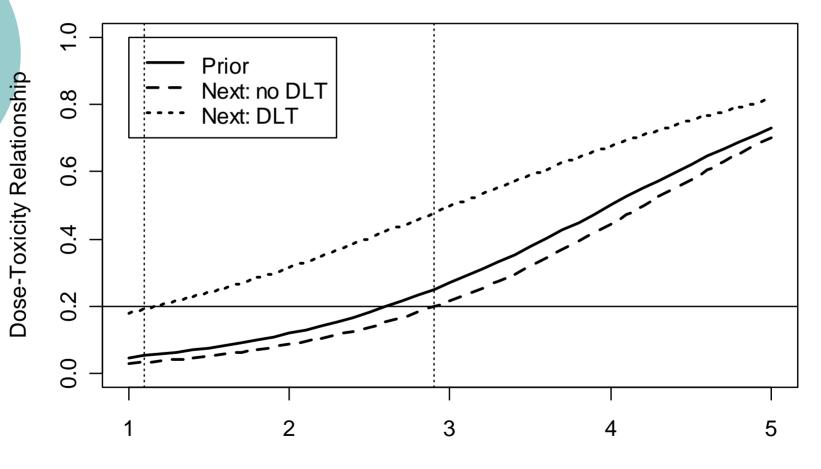
Try a normal prior with mean 1: tweak variance

No DLT

DLT



Scenarios for next patient



Dose

Theoretically: a beautiful design!

o BUT!

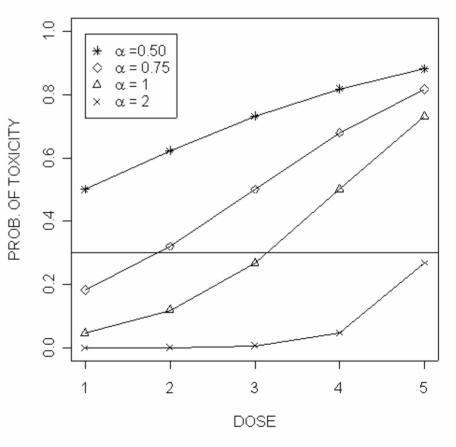
- Concern over starting in mid-dose range
- Concern over escalating without enough data
- Concern over escalating too quickly
- Due to safety concerns, several authors developed variants
 - Modified CRM (Goodman et al. 1995)
 - Extended CRM [2 stage] (Moller, 1995)
 - Restricted CRM (Moller, 1995)
 - and others....
- Some variants are not Bayesian!

Modified CRM

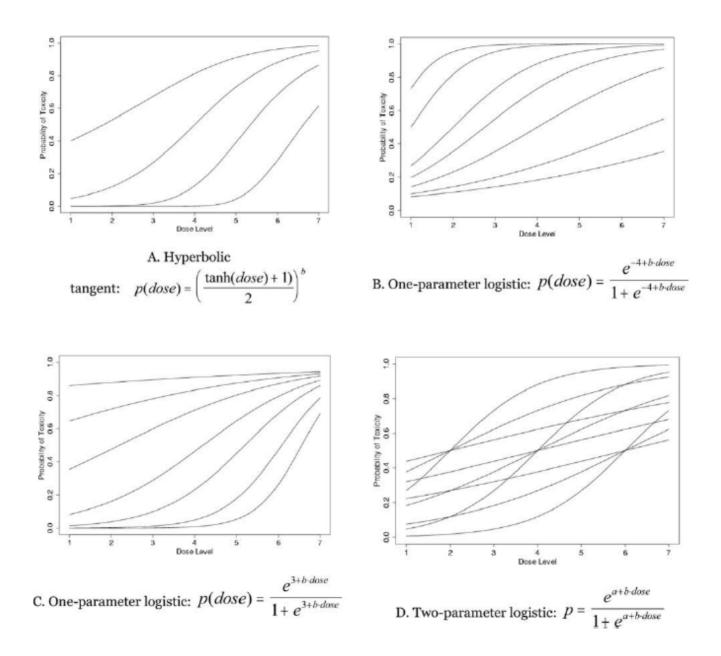
(Goodman, Zahurak, and Piantadosi, Statistics in Medicine, 1995)

Carry-overs from standard CRM

- Mathematical dosetoxicity model must be assumed
- To do this, need to think about the dose-response curve and get preliminary model.
- We CHOOSE the level of toxicity that we desire for the MTD
- At end of trial, we estimate dose response curve.



Some other mathematical models we could choose

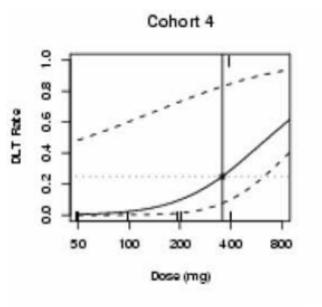


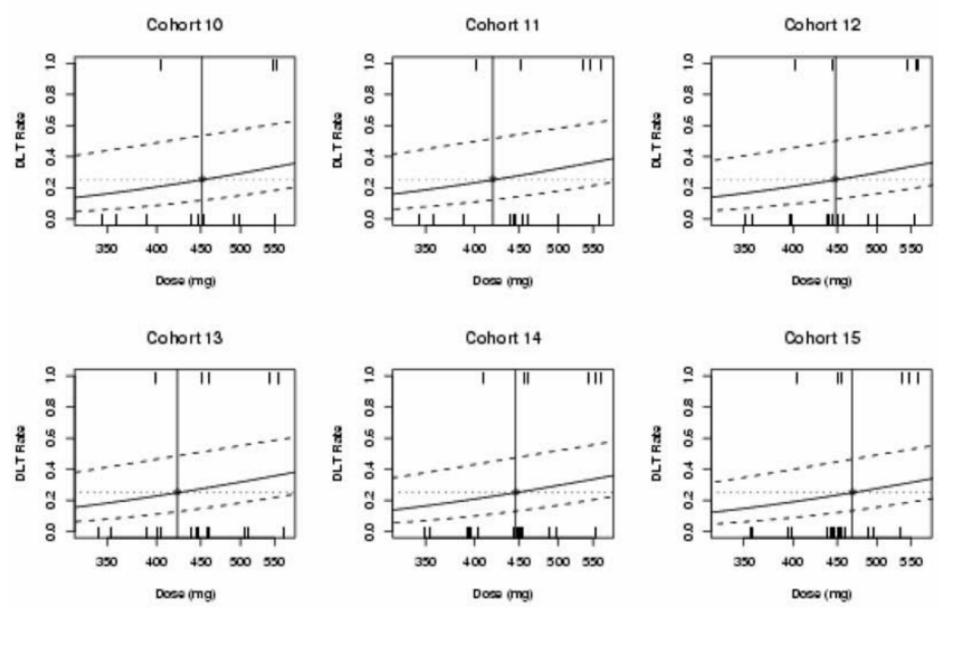
Modified CRM by Goodman, Zahurak, and Piantadosi (Statistics in Medicine, 1995)

- Modifications by Goodman et al.
 - Use 'standard' dose escalation model until first toxicity is observed:
 - Choose cohort sizes of 1, 2, or 3
 - \circ Use standard '3+3' design (or, for example, '2+2')
 - Upon first toxicity, fit the dose-response model using observed data
 - \circ Estimate α
 - Find dose that is closest to desired toxicity rate.
 - Does not allow escalation to increase by more than one dose level.
 - De-escalation can occur by more than one dose level.

Simulated Example

- Shows how the CRM works in practice
- Assume:
 - Cohorts of size 2
 - Escalate at **fixed doses** until DLT occurs
 - Then, fit model and use model-based escalation
 - Increments of 50mg are allowed
 - Stop when 10 patients have already been treated at a dose that is the next chosen dose





Result

- At the end, we fit our final dosetoxicity curve
- 450mg is determined to be the optimal dose to take to phase II
- o 30 patients (?!)
- Confidence interval for true DLT rate at 450mg: 15% - 40%
- Used ALL of the data to make our conclusion

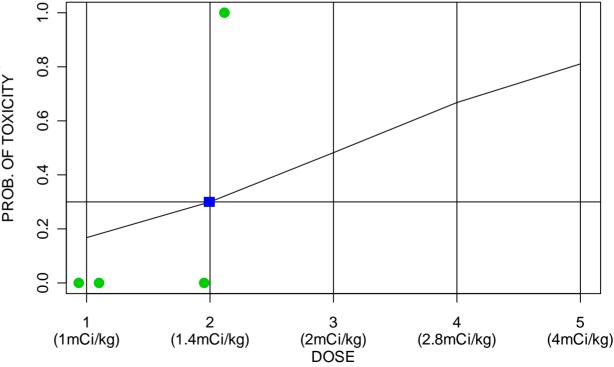
Real Example Samarium in pediatric osteosarcoma: **Desired DLT rate is 30%.**

2 patients treated at dose 1 with 0 toxicities 2 patients treated at dose 2 with 1 toxicity

→ Fit CRM using equation below

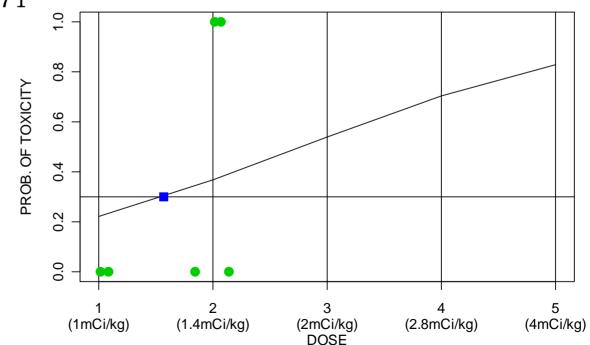
$$p(toxicity|dose = d_i) = \frac{\exp(3 + \alpha d_i)}{1 + \exp(3 + \alpha d_i)}$$

- Estimated $\alpha = 0.77$ Estimated dose is 1.4mCi/kg for next cohort. for next cohort.



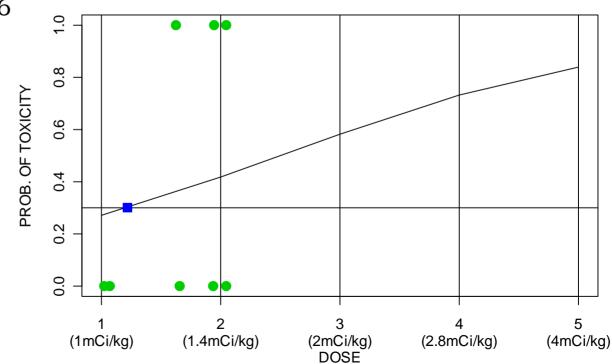
Example Samarium study with cohorts of size 2:
2 patients treated at 1.0 mCi/kg with no toxicities
4 patients treated at 1.4 mCi/kg with 2 toxicities
→ Fit CRM using equation on earlier slide

- Estimated $\alpha = 0.71$
- Estimated dose for next patient is 1.2 mCi/kg



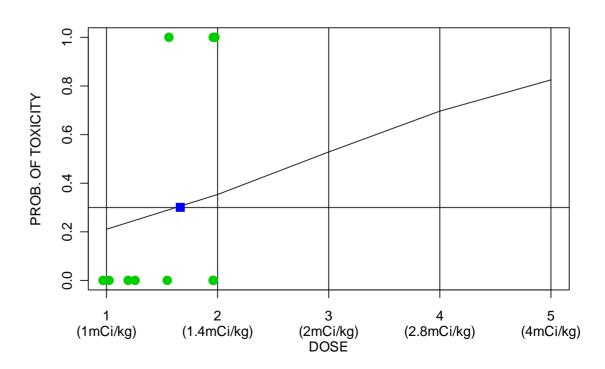
Example Samarium study with cohorts of size 2: 2 patients treated at 1.0 mCi/kg with no toxicities 4 patients treated at 1.4 mCi/kg with 2 toxicities 2 patients treated at 1.2 mCi/kg with 1 toxicity → Fit CRM using equation on earlier slide

- Estimated $\alpha = 0.66$
- Estimated dose for next patient is 1.1 mCi/kg



Example Samarium study with cohorts of size 2: 2 patients treated at 1.0 mCi/kg with no toxicities 4 patients treated at 1.4 mCi/kg with 2 toxicities 2 patients treated at 1.2 mCi/kg with 1 toxicity

- 2 patients treated at 1.1 mCi/kg with no toxicities
- → Fit CRM using equation on earlier slide
- Estimated $\alpha = 0.72$
- Estimated dose for next patient is 1.2 mCi/kg



When does it end?

- Pre-specified stopping rule
- Can be fixed sample size
- Often when a "large" number have been assigned to one dose.
- This study should enroll at least two more cohorts.

Dose increments

- Can be discrete or continuous
- o Infusion?
- Tablet?
- Stopping rule should depend on nature (and size) of allowed increment!

Some reasons why to use CRM

Table 4 Characteristics of five Phase 1 studies. Designs 1–3 are CRM designs with different sample sizes and cohort sizes. Designs 4–6 are "3 + 3" designs with different prespecified dose levels. All six designs have the same true model of dose-toxicity. Dose levels for the "3 + 3" designs are shown in Figure 5. Results are based on 1000 simulated trials for each design

		Design 1 (CRM) (Example 2)	Design 2 (CRM)	Design 3 (CRM)		Design 5 ("3 + 3")	Design 6 ("3 + 3")
	Total sample size: fixed for CRMs, median for "3 + 3"	30	50	60	27	27	39
2	Patients per cohort	3	5	3	3	3	3
3	Number of cohorts fixed for CRMs, median for "3 + 3"	10	10	20	9	9	13
4	% of trials with recommended dose within	57%	72%	71%	41%	35%	32%
	250 mg of true dose (1656 mg)						
5	% of trials with recommended dose within	80%	91%	89%	41%	54%	58%
	400 mg of true dose (1656 mg)						ľ
6	% of trials with recommended dose	9.5%	5.8%	5.9%	7.1%	21%	12%
	dose-limiting toxicity rate of >40%						
7	% of trials with recommended dose	0.9%	0.2%	0.6%	7.1%	2.0%	0.6%
	dose-limiting toxicity rate of >50%						
8	% of trials with recommended dose	13%	5.7%	6.2%	52%	44%	38%
	dose-limiting toxicity rate of <20%						
9	% of trials with recommended dose	0.0%	0.1%	0.0%	11%	16%	6.9%
	dose-limiting toxicity rate of <10%						
10	Average % of patients treated at doses with	7.6%	7.8%	5.7%	17%	2396	7.5%
	40% or greater dose-limiting toxicity rate						
11	Average % of patients treated at doses with	32%	19%	24%	62%	5396	64%
	20% or less dose-limiting toxicity rate						
12	Average % of patients with dose-limiting toxicities	26%	28%	26%	21%	22%	19%
	······································						

A little more on the statistics:

- Original design was purely Bayesian
- Requires a prior distribution
 - Prior is critically important because it outweighs the data early in the trial
 - Computationally is somewhat challenging
- Some revised designs use ML
 - Simpler to use
 - Once a DLT is observed, model can be fit
 - Some will "inform" the ML approach using "pseudo-data" (Piantadosi)

Simple prediction, but backwards(?)

• Usual prediction:

- Get some data
- Fit model
- Estimate the **outcome** for a <u>new</u> patient with a particular **characteristic**
- CRM prediction
 - Get some data
 - Fit model
 - Find the **characteristic** (dose) associated with a particular **outcome** (DLT rate)

Finding the next dose: ML approach

- Use maximum likelihood to estimate the model.
- What likelihood do we use? Binomial.

$$L(p; y) = \prod_{i=1}^{N} p^{y_i} (1-p)^{(1-y_i)}$$

$$p(toxicity|dose = d_i) = \frac{\exp(3 + \alpha d_i)}{1 + \exp(3 + \alpha d_i)}$$

 \circ Algorithmic estimation of α

Finding next dose

• Recall model, now with estimated α :

$$p_i = \frac{\exp(3 + \hat{\alpha}d_i)}{1 + \exp(3 + \hat{\alpha}d_i)}$$

• Rewrite in terms of d_i :

$$d_i = \frac{\log(\frac{p_i}{1-p_i}) - 3}{\hat{\alpha}}$$

Finding next dose

o Use desired DLT rate as p_i

$$d_i = \frac{\log(\frac{3}{7}) - 3}{\hat{\alpha}} = \frac{-3.85}{\hat{\alpha}}$$

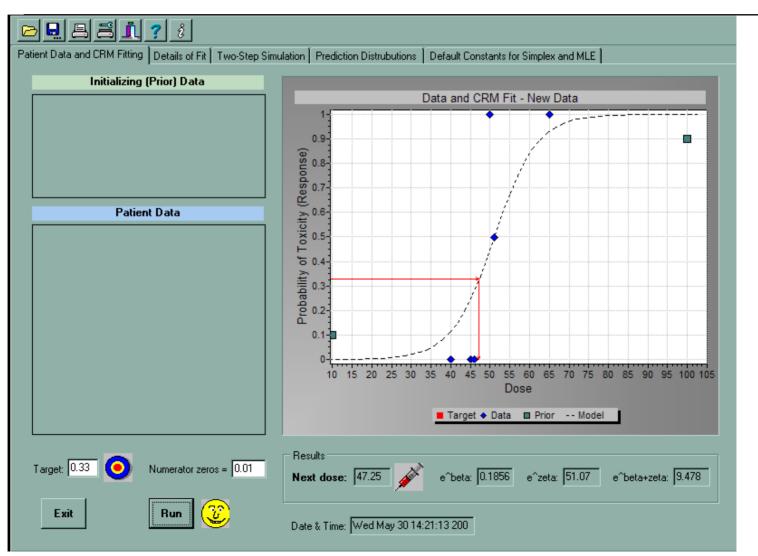
Negative dose?

Doses are often mapped to another scaledose coding:

- -6 = level 1 (1.0)
- -5 = level 2 (1.4)
- -4 = 1evel 3 (2.0)
- -3 = 1evel 4 (2.8)
- -2 = 1evel 5 (4.0)
- WHY? Makes the statistics work....

CRM Software:

http://www.cancerbiostats.onc.jhmi.edu/software.cfm



Escalation with Overdose Control

- EWOC (Babb et al.)
- Similar to CRM
- o Bayesian
- Advantage: overdose control
 - "loss function"
 - Constrained so that the predicted proportion of patients who receive an overdose cannot exceed a specified value
 - Implies that giving an overdose is greater mistake than an underdose
 - CRM does not make this distinction
 - This control is changed as data accumulates

Figure 3. Proportion of patients given doses for which the probability of a severe toxic reaction is less than or equal to 1/5. Each \times and + represents the results from all simulation runs for a particular parameter combination. Each point, (\bullet), is the average of the results obtained for a particular method at the six parameter combinations considered. For each of the UD schemes the results obtained when only 6 dose levels were used are shown to the left of the results obtained when 11 levels were used

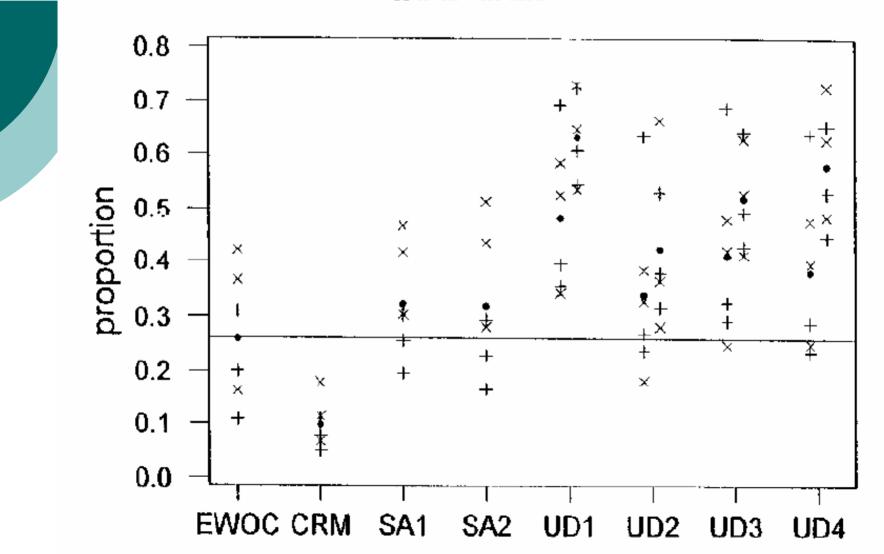


Figure 9. Average bias of $\hat{\gamma}$, the estimate of the MTD i

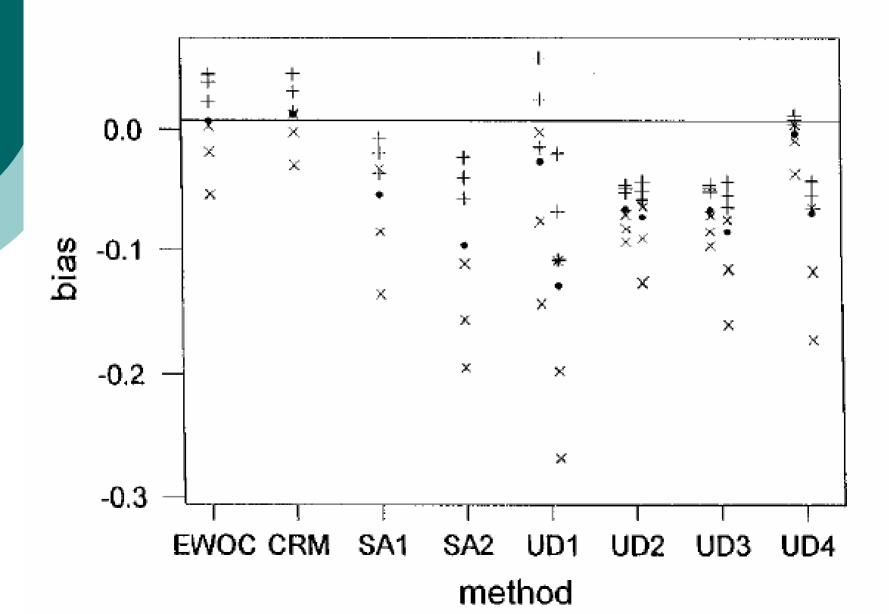
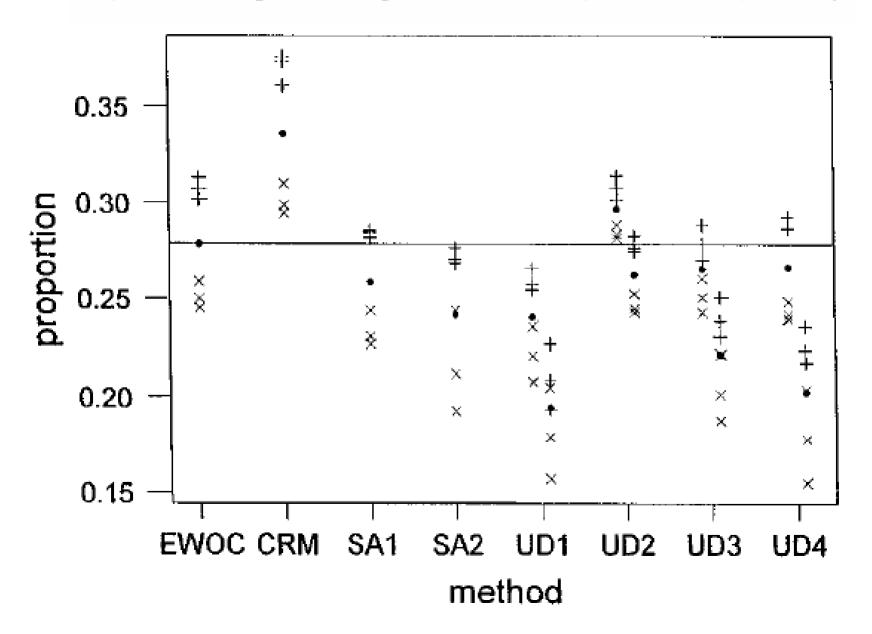


Figure 12. Proportion of patients exhibiting dose-limiting toxicity



EWOC Software

o http://www.sph.emory.edu/BRI-WCI/ewoc.html

EWOC - DIALOG								
Required	Prior Distributions							
Probability of Dose Limiting Toxicity	0.33000	for the Target Dose						
Probability of Exceeding Target Dose	0.25000	Uniform						
🔽 Minimum Dose	140.00000	C Beta with Mode 0.50						
Maximum Dose	425.00000	and Standard Deviation 0.30						
Data File C:\Documents and Setting	for the Probability of DLT at Initial Dose							
Optional	Uniform between 0.00000							
Title sagar Minimum Dose Increment 20.0000	and 0.33000							
 Bayesian Confidence Interval 90. Marginal Posterior Distribution Plot 	Open Parameter File Cancel							
 Tree of Doses for Next two Variable Alpha Increment 0.0500 	Save Parameters Next Dose							

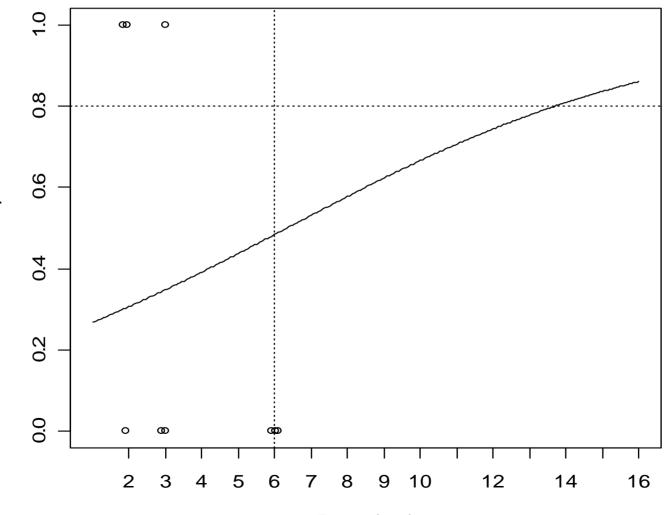
Other Novel Ideas in Phase I

Outcome is not always toxicity
Even in phase I, efficacy can be outcome to guide dose selection
Two outcomes: safety and efficacy

Efficacy Example: Rapamycin in Pancreatic Cancer

- o Outcome: response
- Response = 80% inhibition of pharmacodynamic marker
- Assumption: as dose increases, % of patients with response will increase
- Desired proportion responding: 80%

Efficacy Example: Rapamycin in Pancreatic Cancer



Prob of Response

Dose (mg)

Safety and Efficacy

- o Zhang, Sargent, Mandrekar
- Example: high dose can induce "overstimulation"
- Three categories:
 - 1 = no response, no DLT
 - 2 = response, no DLT
 - 3 = DLT
- Use the **continuation ratio model**
- Very beautiful(!)
- Not particularly friendly at the current time for implementation

Safety and Efficacy

 I'm working on less beautiful, more practical approach

 Simultaneously search for doses with constraints based on toxicity

Summary: "Novel" Phase I trials

 Offer significant improvements over "traditional" phase I design

- Safer
- More accurate
- Slightly larger phase I: worth it!
- o Related methods: Bayesian Adaptive

Why isn't everyone using these?

- Change in paradigm
- o Larger N
- o "I just want a <u>quick</u> phase I"
- Large investment of time from statistician
- Need time to "think" and plan it.
- IRB and others (e.g. CTEP) worry about safety (unjustified!)

References

- 1. Babb, Rogatko, Zacks (1998) "Cancer Phase I Clinical Trials: Efficient Dose Escalation with Overdose Control" Statistics in Medicine, 17, 1103-1120
- 2. O'Quigley, JO, M Pepe, and L Fisher, *Continual Reassessment Method: A Practical Design for Phase I Clinical Trials in Cancer.* Biometrics, 46:33-48, 1990.
- 3. Goodman, SN, ML Zahurak, and S Piantadosi, *Some Practical Improvements in the Continual Reassessment Method for Phase I Studies.* Statistics in Medicine, 14:1149-1161, 1995.
- 4. Storer, BE, An Evaluation of Phase I Clinical Trial Designs in the Continuous Dose-response Setting. Statistics in Medicine, 20(16):2399-2408, 2001.
- 5. Ahn, C, *An evaluation of phase I cancer clinical trial designs.* Statistics in Medicine, 17:1537-1549, 1998.
- 6. Faries, D, *Practical Modifications of the Continual Reassessment Method for Phase I Cancer Clinical Trials.* Journal of Biopharmaceutical Statistics, 4:147-164, 1994.
- 7. Moller, S, An extension of the continual reassessment methods using a preliminary up-and-down design in a dose finding study in cancer patients, in order to investigate a greater range of doses. Statistics in Medicine, 14:911-922, 1995.
- 8. Piantadosi, S, JD Fisher, and S Grossman, *Practical Implementation of a modified continual reassessment method for dose-finding trials.* Cancer Chemotherapeutics and Pharmacology, 41:429-436, 1998.
- 9. Zohar, S and S Chevret, *The continual reassessment method: comparison of Bayesian stopping rules for dose-ranging studies.* Statistics in Medicine, 20:2827-2843, 2001.
- 10. Garrett-Mayer E, *The continual reassessment method for dose-finding: a tutorial*. Clinical Trials, 3: 57-71, 2006.
- 11. Zhang W, Sargent DJ, Mandrekar S. An adaptive dose-finding design incorporating both toxicity and efficacy. Statistics in Medicine, 25: 2365-2383, 2006.

Homework Problem

- A newly proposed study wants to use CRM design for a 'first in man' phase I study
- The desired DLT rate is 25%
- The proposed design is as follows:
 - Use cohorts of size 2
 - Doses between 100mg and 1000mg will be considered based on preclinical data
 - Dose increases are not permitted to be more than 200mg of the previous dose
 - The probability model is

$$\log(\frac{p}{1-p}) = -8 + \alpha d$$

- d = dose (takes values between 100 and 1000)
- α is the parameter of interest
- p is the probability of a DLT
- The prior distribution for α is

 $\alpha \sim N(0.02, 0.05^2)$

Homework Problem (continued)

- 1. Using the prior distribution, find a starting dose for the 1st two patients.
- The first two patients were treated at the dose you chose in 1. Based on the posterior distribution, find alpha and the dose for the 2nd cohort of patients under the following observed data scenarios:
 - a. 0 DLTs
 - b. 1 DLT, 1 non-DLT
 - c. 2 DLTs

Show all work and include relevant plots if applicable!

Homework Help: Here is an R function and code that will help

```
fx <- function(a, x) {
             # fx is an R function for solving for alpha. two inputs are required:
             # a is a vector of values of alpha to consider
             # x is a vector of 0's and 1's indicating the successes and failures
             # define log prior
             prior <- loq(dnorm(a, 0.02, 0.05))
             # define log-likelihood
             lik < -sum(x)*(-8+330*a) - length(x)*log(1+exp(-8+330*a))
             # define log-posterior: the sum of the log-prior and the log-likelihood
             postr <- prior+lik</pre>
             # find value that maximizes the posterior distribution
             alphahat <- a[postr==max(postr)]
             # make a plot
             par(mfrow=c(1,1))
             # find y range that will include prior, likelihood and posterior
             yl <- range(exp(prior), exp(lik), exp(postr))</pre>
             # plot the prior
             plot(a, exp(prior), type="l", ylab="Distribution", lwd=2, ylim=yl)
             # plot the likelihood
             lines(a, exp(lik), lty=2, lwd=2)
             # plot the posterior
             lines(a, exp(postr), lty=3, lwd=2)
             # include a legend in the plot
             legend(max(a),yl[2],c("Prior","Lik","Postr"), lty=c(1,2,3), lwd=c(2,2,2), xjust=1)
             # include a vertical line at alphahat
             abline(v=alphahat, lty=3)
             # return the estimated value of alpha that maximizes the posterior
             return(alphahat)
alpha <- seq(0.001,0.1, 0.001)
fx(alpha, c(0,0))
fx(alpha, c(0,1))
fx(alpha, c(1,1))
```