Taking your agents to the clinic: phase I study design

Elizabeth Garrett-Mayer, PhD Associate Professor Director of Biostatistics, Hollings Cancer Center

Dose finding

- Traditional goal: Find the highest dose with acceptable toxicity
- New goals:
 - find dose with sufficient effect on biomarker
 - find dose with acceptable toxicity and high efficacy
 - Find dose with acceptable toxicity in the presence of another agent that may also be escalated.

Acceptable toxicity

• What is acceptable rate of toxicity?

- 20%?
- 30%?
- 50%?
- What is toxicity????
 - Standard in cancer: Grade 4 hematologic or grade 3/4 non-hematologic toxicity
 - Always?
 - Does it depend on reversibility of toxicity?
 - Does it depend on intensity of treatment?
 - o Tamoxifen?
 - Chemotherapy?

Phase I study design

• "Standard" Phase I trials (in oncology) use what is often called the '3+3' design (aka 'modified Fibonacci'):

Treat 3 patients at dose K
1. If 0 patients experience dose-limiting toxicity (DLT), escalate to dose K+1
2. If 2 or more patients experience DLT, de-escalate to level K-1
3. If 1 patient experiences DLT, treat 3 more patients at dose level K
A. If 1 of 6 experiences DLT, escalate to dose level K+1
B. If 2 or more of 6 experiences DLT, de-escalate to level K-1

- Maximum tolerated dose (MTD) is considered highest dose at which 1 or 0 out of six patients experiences DLT.
- Doses need to be <u>pre-specified</u>
- Confidence in MTD is usually poor.

Should we use the "3+3"?

- It is terribly imprecise and inaccurate in its estimate of the MTD
- Why?
 - MTD is not based on all of the data
 - Algorithm-based method
 - Ignores rate of toxicity!!!
- Likely outcomes:
 - Choose a dose that is too high
 - Find in phase II that agent is too toxic.
 - Abandon further investigation or go back to phase I
 - Choose a dose that is too low
 - Find in phase II that agent is ineffective
 - Abandon agent

Two examples:

Example 1: total N=21

	Cohort 1	Cohort 2	Cohort 3	Cohort 4	Cohort 5	Cohort 6	Cohort 7
Dose	1	2	2	3	3	4	4
DLTs	0/3	1/3	0/3	1/3	0/3	1/3	1/3

Observed Data

Observed Data: with 90% CIs

Example 2:

Example 2: total N=12

	Cohort 1	Cohort 2	Cohort 3	Cohort 4	
Dose	1	2	3	4	
DLTs	DLTs 0/3		0/3	2/3	

Observed Data

Observed Data: with 90% CIs

Why is the 3+3 so popular?

- People know how to implement it
- o "we just want a quick phase I"
- o It has historic presence
- FDA (et al.) accept and promote it
- There is a level of comfort from the approach
- The "better" approaches are too statistical(!)

USE A SMARTER DESIGN!

- Phase I is the most critical phase of drug development!
- What makes a good design?
 - Accurate selection of MTD
 - o dose close to true MTD
 - o dose has DLT rate close to the one specified
 - Relatively few patients in trial are exposed to toxic doses
- Why not impose a statistical model?
- What do we "know" that would help?
 - Monotonicity
 - Desired level of DLT

Continual Reassessment Method (CRM)

- Allows statistical modeling of optimal dose: dose-response relationship is assumed to behave in a certain way
- Can be based on "safety" or "efficacy" outcome (or both).
- Design searches for best dose given a desired toxicity or efficacy level and does so in an efficient way.
- This design REALLY requires a statistician throughout the trial.
- ADAPTIVE

CRM history in brief

- Originally devised by O'Quigley, Pepe and Fisher (1990) where dose for next patient was determined based on responses of patients previously treated in the trial
- Due to safety concerns, several authors developed variants
 - Modified CRM (Goodman et al. 1995)
 - Extended CRM [2 stage] (Moller, 1995)
 - Restricted CRM (Moller, 1995)
 - and others....

Some reasons why to use CRM

Table 4 Characteristics of five Phase 1 studies. Designs 1–3 are CRM designs with different sample sizes and cohort sizes. Designs 4–6 are "3 + 3" designs with different prespecified dose levels. All six designs have the same true model of dose-toxicity. Dose levels for the "3 + 3" designs are shown in Figure 5. Results are based on 1000 simulated trials for each design

		Design 1 (CRM) (Example 2)	Design 2 (CRM)	Design 3 (CRM)		Design 5 ("3 + 3")	Design 6 ("3 + 3")
1	Total sample size: fixed for CRMs, median for "3 + 3"	30	50	60	27	27	39
2	Patients per cohort	3	5	3	3	3	3
3	Number of cohorts fixed for CRMs, median for "3 + 3"	r 10	10	20	9	9	13
4	% of trials with recommended dose within	57%	72%	71%	41%	35%	32%
	250 mg of true dose (1656 mg)						
-5	% of trials with recommended dose within	80%	91%	89%	41%	5496	58%
	400 mg of true dose (1656 mg)						
6	% of trials with recommended dose	9.5%	5.8%	5.9%	7.1%	21%	12%
	dose-limiting toxicity rate of >40%						
7	% of trials with recommended dose	0.9%	0.2%	0.6%	7.1%	2.0%	0.6%
	dose-limiting toxicity rate of >50%						
8	% of trials with recommended dose	13%	5.7%	6.2%	52%	44%	38%
	dose-limiting toxicity rate of <20%						
9	% of trials with recommended dose	0.0%	0.1%	0.0%	11%	16%	6.9%
	dose-limiting toxicity rate of <10%						
10	Average % of patients treated at doses with	7.6%	7.8%	5.7%	17%	2396	7.5%
	40% or greater dose-limiting toxicity rate						
11	Average % of patients treated at doses with	32%	19%	24%	62%	5396	64%
	20% or less dose-limiting toxicity rate						
12	Average % of patients with dose-limiting toxicities	26%	28%	26%	21%	22%	19%

Basic Idea of CRM

Modified CRM

(Goodman, Zahurak, and Piantadosi, Statistics in Medicine, 1995)

Carry-overs from standard CRM

- Mathematical dose-toxicity model must be assumed
- To do this, need to think about the dose-response curve and get preliminary model.
- We CHOOSE the level of toxicity that we desire for the MTD (e.g., p = 0.30)
- At end of trial, we can estimate dose response curve.

Some other mathematical models we could choose

Modified CRM by Goodman, Zahurak, and Piantadosi (Statistics in Medicine, 1995)

- Modifications by Goodman et al.
 - Use 'standard' dose escalation model until first toxicity is observed:
 - Choose cohort sizes of 1, 2, or 3
 - \circ Use standard '3+3' design (or, in this case, '2+2')
 - Upon first toxicity, fit the dose-response model using observed data
 - \circ Estimate α
 - Find dose that is closest to desired toxicity rate.
 - Does not allow escalation to increase by more than one dose level.
 - De-escalation can occur by more than one dose level.

Simulated Example

- Shows how the CRM works in practice
- Assume:
 - Cohorts of size 2
 - Escalate at fixed doses until DLT occurs
 - Then, fit model and use model-based escalation
 - Increments of 50mg are allowed
 - Stop when 10 patients have already been treated at a dose that is the next chosen dose

Result

- 450mg is determined to be the optimal dose to take to phase II
- o 30 patients (?!)
- Confidence interval for true DLT rate at 450mg: 15% - 40%
- Used ALL of the data to make our conclusion

Real Example Samarium in pediatric osteosarcoma: **Desired DLT rate is 30%.**

2 patients treated at dose 1 with 0 toxicities 2 patients treated at dose 2 with 1 toxicity

→ Fit CRM using equation below

$$p(toxicity|dose = d_i) = \frac{\exp(3 + \alpha d_i)}{1 + \exp(3 + \alpha d_i)}$$

- Estimated $\alpha = 0.77$ Estimated dose is 1.4mCi/kg for next cohort. for next cohort.

Example Samarium study with cohorts of size 2:
2 patients treated at 1.0 mCi/kg with no toxicities
4 patients treated at 1.4 mCi/kg with 2 toxicities
→ Fit CRM using equation on earlier slide

- Estimated $\alpha = 0.71$
- Estimated dose for next patient is 1.2 mCi/kg

Example Samarium study with cohorts of size 2: 2 patients treated at 1.0 mCi/kg with no toxicities 4 patients treated at 1.4 mCi/kg with 2 toxicities 2 patients treated at 1.2 mCi/kg with 1 toxicity → Fit CRM using equation on earlier slide

- Estimated $\alpha = 0.66$
- Estimated dose for next patient is 1.1 mCi/kg

Example Samarium study with cohorts of size 2: 2 patients treated at 1.0 mCi/kg with no toxicities 4 patients treated at 1.4 mCi/kg with 2 toxicities 2 patients treated at 1.2 mCi/kg with 1 toxicity

- 2 patients treated at 1.1 mCi/kg with no toxicities
- → Fit CRM using equation on earlier slide
- Estimated $\alpha = 0.72$
- Estimated dose for next patient is 1.2 mCi/kg

When does it end?

- Pre-specified stopping rule
- Can be fixed sample size
- Often when a "large" number have been assigned to one dose.
- This study should enroll at least two more cohorts.

Dose increments

- Can be discrete or continuous
- o Infusion?
- Tablet?
- Stopping rule should depend on nature (and size) of allowed increment!

A little more on the statistics:

- Original design was purely Bayesian
- Requires a prior distribution
 - Prior is critically important because it outweighs the data early in the trial
 - Computationally is somewhat challenging
- Some revised designs use ML
 - Simpler to use
 - Once a DLT is observed, model can be fit
 - Some will "inform" the ML approach using "pseudo-data" (Piantadosi)

Simple prediction, but backwards(?)

• Usual prediction:

- Get some data
- Fit model
- Estimate the **outcome** for a <u>new</u> patient with a particular **characteristic**
- CRM prediction
 - Get some data
 - Fit model
 - Find the **characteristic** (dose) associated with a particular **outcome** (DLT rate)

Finding the next dose: ML approach

- Use maximum likelihood to estimate the model.
- What likelihood do we use? Binomial.

$$L(p; y) = \prod_{i=1}^{N} p^{y_i} (1-p)^{(1-y_i)}$$

$$p(toxicity|dose = d_i) = \frac{\exp(3 + \alpha d_i)}{1 + \exp(3 + \alpha d_i)}$$

 \circ Algorithmic estimation of α

Finding next dose

• Recall model, now with estimated α :

$$p_i = \frac{\exp(3 + \hat{\alpha}d_i)}{1 + \exp(3 + \hat{\alpha}d_i)}$$

• Rewrite in terms of d_i :

$$d_i = \frac{\log(\frac{p_i}{1-p_i}) - 3}{\hat{\alpha}}$$

Finding next dose

o Use desired DLT rate as p_i

$$d_i = \frac{\log(\frac{3}{7}) - 3}{\hat{\alpha}} = \frac{-3.85}{\hat{\alpha}}$$

Negative dose?

Doses are often mapped to another scaledose coding:

- -6 = level 1 (1.0)
- -5 = level 2 (1.4)
- -4 = 1evel 3 (2.0)
- -3 = 1evel 4 (2.8)
- -2 = 1evel 5 (4.0)
- WHY? Makes the statistics work....

CRM Software:

http://www.cancerbiostats.onc.jhmi.edu/software.cfm

Escalation with Overdose Control

- EWOC (Babb et al.)
- Similar to CRM
- o Bayesian
- Advantage: overdose control
 - "loss function"
 - Constrained so that the predicted proportion of patients who receive an overdose cannot exceed a specified value
 - Implies that giving an overdose is greater mistake than an underdose
 - CRM does not make this distinction
 - This control is changed as data accumulates

Figure 3. Proportion of patients given doses for which the probability of a severe toxic reaction is less than or equal to 1/5. Each \times and + represents the results from all simulation runs for a particular parameter combination. Each point, (\bullet), is the average of the results obtained for a particular method at the six parameter combinations considered. For each of the UD schemes the results obtained when only 6 dose levels were used are shown to the left of the results obtained when 11 levels were used

Figure 9. Average bias of $\hat{\gamma}$, the estimate of the MTD i

Figure 12. Proportion of patients exhibiting dose-limiting toxicity

EWOC Software

o http://www.sph.emory.edu/BRI-WCI/ewoc.html

EWOC - DIALOG		
Required		Prior Distributions
Probability of Dose Limiting Toxicity	0.33000	for the Target Dose
Probability of Exceeding Target Dose	0.25000	Uniform
🔽 Minimum Dose	140.00000	C Beta with Mode 0.50
Maximum Dose	425.00000	and Standard Deviation 0.30
Data File C:\Documents and Setting: View		for the Probability of DLT at Initial Dose
Optional		Uniform between 0.00000
Title sagar Minimum Dose Increment 20.00000		and 0.33000
 Bayesian Confidence Interval 90.0 % Marginal Posterior Distribution Plot 		Open Parameter File Cancel
 Tree of Doses for Next two Patients Variable Alpha Increment 0.05000 		Save Parameters Next Dose

Other Novel Ideas in Phase I

Outcome is not always toxicity
Even in phase I, efficacy can be outcome to guide dose selection
Two outcomes: safety and efficacy

Efficacy Example: Rapamycin in Pancreatic Cancer

- o Outcome: response
- Response = 80% inhibition of pharmacodynamic marker
- Assumption: as dose increases, % of patients with response will increase
- Desired proportion responding: 80%

Efficacy Example: Rapamycin in Pancreatic Cancer

Prob of Response

Safety and Efficacy

- o Zhang, Sargent, Mandrekar
- Example: high dose can induce "overstimulation"
- Three categories:
 - 1 = no response, no DLT
 - 2 = response, no DLT
 - 3 = DLT
- Use the continuation ratio model
- Very beautiful(!)
- Not particularly friendly at the current time for implementation

Safety and Efficacy

- I'm working on less beautiful, more practical approach
- Y = 1 if toxicity = 0 if no toxicity
- Z = 1 if efficacy
 = 0 if no efficacy
- Simultaneously search for doses with constraints based on toxicity

Summary: "Novel" Phase I trials

 Offer significant improvements over "traditional" phase I design

- Safer
- More accurate
- Slightly larger phase I: worth it!
- o Related methods: Bayesian Adaptive

Why isn't everyone using these?

- Change in paradigm
- o Larger N
- o "I just want a <u>quick</u> phase I"
- Large investment of time from statistician
- Need time to "think" and plan it.
- IRB and others (e.g. CTEP) worry about safety (unjustified!)

References

- 1. Babb, Rogatko, Zacks (1998) "Cancer Phase I Clinical Trials: Efficient Dose Escalation with Overdose Control" Statistics in Medicine, 17, 1103-1120
- 2. O'Quigley, JO, M Pepe, and L Fisher, *Continual Reassessment Method: A Practical Design for Phase I Clinical Trials in Cancer.* Biometrics, 46:33-48, 1990.
- 3. Goodman, SN, ML Zahurak, and S Piantadosi, *Some Practical Improvements in the Continual Reassessment Method for Phase I Studies.* Statistics in Medicine, 14:1149-1161, 1995.
- 4. Storer, BE, An Evaluation of Phase I Clinical Trial Designs in the Continuous Dose-response Setting. Statistics in Medicine, 20(16):2399-2408, 2001.
- 5. Ahn, C, *An evaluation of phase I cancer clinical trial designs.* Statistics in Medicine, 17:1537-1549, 1998.
- 6. Faries, D, *Practical Modifications of the Continual Reassessment Method for Phase I Cancer Clinical Trials.* Journal of Biopharmaceutical Statistics, 4:147-164, 1994.
- 7. Moller, S, An extension of the continual reassessment methods using a preliminary up-and-down design in a dose finding study in cancer patients, in order to investigate a greater range of doses. Statistics in Medicine, 14:911-922, 1995.
- 8. Piantadosi, S, JD Fisher, and S Grossman, *Practical Implementation of a modified continual reassessment method for dose-finding trials.* Cancer Chemotherapeutics and Pharmacology, 41:429-436, 1998.
- 9. Zohar, S and S Chevret, *The continual reassessment method: comparison of Bayesian stopping rules for dose-ranging studies.* Statistics in Medicine, 20:2827-2843, 2001.
- 10. Garrett-Mayer E, *The continual reassessment method for dose-finding: a tutorial*. Clinical Trials, 3: 57-71, 2006.
- 11. Zhang W, Sargent DJ, Mandrekar S. An adaptive dose-finding design incorporating both toxicity and efficacy. Statistics in Medicine, 25: 2365-2383, 2006.