Likelihood Study Design Proposal "Just do it."

Jeffrey D. Blume, PhD

Department of Biostatistics
Vanderbilt University
SCT 2011 Vancouver

The Law of Likelihood says

- Strength of evidence for H_A over H_B is measured by the likelihood ratio: LR = P_A(x)/P_B(x)
- "H_A is supported over H_B by a factor of LR."
 - If LR=1, the evidence is neutral
 - If LR>1, the evidence supports H_A over H_B
 - If LR<1, the evidence supports H_B over H_A

Weak evidence

• for H_{Δ} over H_{R} : 1<LR<8

• for H_B over H_Δ : 1/8 < LR < 1

Moderate evidence

• for H_A over H_B : 8<LR<32

• for H_B over H_Δ : 1/32 < LR < 1/8

Strong evidence

• for H_{Δ} over H_{B} : 32<LR

• for H_B over H_A : LR<1/32

- p=0.05 maps to LR=6.8 (with one look)
- p-values do not distinguish between weak evidence and evidence in favor of the null

Analysis model

- Control: events (e_c) , exposure (t_c) , rate (λ)
- Treatment: events (e_t) , exposure (t_t) , rate (λ_t)

$$\begin{vmatrix}
e_c \sim Poiss(\lambda_c t_c) \\
e_t \sim Poiss(\lambda_t t_t)
\end{vmatrix} \implies e_t \mid e_c + e_t \sim Binom(e_c + e_t, p)$$

where
$$p = \frac{h}{h+g}$$
 $h = \frac{\lambda_t}{\lambda_c}$ $g = \frac{t_c}{t_t}$

- Mapping: $(h_i, g_i) \rightarrow p_i$ for i = 0,1
 - Example (under null): $h_0=1$, $g_0=1$ so $p_0=1/2$

Note: data actually generated under exponential assumption

Example Likelihood at 12 Months

Properties of likelihood

- Fixes the scale of evidence (e.g., LR not affected by looks)
- 'Strength of evidence' & 'probability of bad result' not confused
- Minimizes average error rate (α+β)/2
 (instead of minimizing β for given α)
- Type I & II rates, FDR₀ & FDR₁ all converge to 0 (in non-sequential case)
- Robust options available for analysis
- Maximum flexibility for conducting and reporting analyses

Metrics for evidential analysis

- How strong is the observed evidence for H₁ over H₂? (Observed likelihood ratio)
- Is the study design reliable?
 (Type I & II error rates; expected sample size)
- What is the chance that the observed data are misleading?
 (Posterior probabilities)

When interpreting observed data, #2 is completely irrelevant

Likelihood's evidential metrics

Evidential Quantity	Name	What it measures	Mathematical Representation
1	likelihood ratio	strength of the evidence	LR
2	probability of observing misleading evidence	propensity for study to yield misleading evidence	$mis_0 = P(LR > k H_0)$ $mis_1 = P(LR < 1/k H_1)$
3	probability that observed evidence is misleading	propensity for observed results to be misleading	$P(H_0 LR > k)$ $P(H_1 LR < 1/k)$

Current Paradigms

Evidential Quantity	What it measures	Hypothesis/ Significance Testing	False Discovery Rates	Bayesian Inference
1	strength of the evidence	Tail-area probability (p-value)	Tail-area probability (p-value) (?!)	Bayes Factor or Posterior Probability (?)
2	propensity for study to yield misleading evidence		Tail-area probability (Type I & II errors)	Operational Characteristics
3	propensity for observed results to be misleading	Misinterpret the tail-area probability	False Discovery Rate(s)	Posterior Probability (??)

Important side note

- Likelihood's 'error rates' are driven to zero as the sample size increase (non-sequential)
- Probabilities of misleading evidence
 - Bounded and well understood
 - Example: $mis_0 = P(LR > k | H_0) \le 1/k$
 - Bound holds in sequential case (e.g. w/ repeated looks)
 - Probabilities are typically much lower than bound
- Evidence for all alternatives is always reported

Design Summary: 'Just do it.'

- Enroll 8 participants per month
 - 1:1 randomization to E vs. E+TT (4 / arm / month)
- Examine likelihood ratio sequentially
 - After every event or after every month
 - Continue with weak evidence: 1/8 < L(h₁)/L(h₀) < 8</p>
 - Stop when evidence not weak: LR < 1/8 or LR > 8
- Repeat in three strata: All, M+ only, M- Only
 - Alternative varies by strata: h₁= 1.5, 2, 1.4
 - One strata may be stopped while other continues

AII (M+ & M-)

Planned Looks

Randomization: 1:1

Accrual per mo.: 8 participants

(4 E & 4 E+TT)

Stopping criteria:

 $k_1 = 1/8$ (favor null) &

 $k_2 = 8$ (favor alt)

Hypothesis Assumptions:

 H_0 : h = 1

 H_1 : h = 1.5

Baseline rates:

E: PFS = 12 months

(rate = 0.058)

E+TT: PFS = 18 months

(rate = 0.039)

		Event-ly	Monthly
Type I Error		0.10	0.02
Power		0.90	0.86
Study Length	null	23	27
(months)	alt	21	25
Total Events	null	87	92
Iolai Events	alt	88	92
Total Exposure	null	2226	2345
(person/mo.)	alt	1805	1909

Early Termination (PET) in Months

	Min	25%	50%	75%	Max	@48
Null	7	20	26	33	48	3%
Alt	5	17	23	31	48	7%

Stratum M+

Planned Looks

Randomization: 1:1

Accrual per mo.: 2 participants

(1E&1E+TT)

Stopping criteria:

 $k_1 = 1/8$ (favor null) &

 $k_2 = 8$ (favor alt)

Hypothesis Assumptions:

 H_0 : h = 1

 H_1 : h = 2

Baseline rates:

PFS = 6 months

(rate = 0.116)

E+TT: PFS = 12 months

(rate = 0.058)

		Event-ly	Monthly
Type I Error		0.09	0.01
Power		0.91	0.85
Study Length	null	23	29
(months)	alt	19	27
Total Events	null	32	32
Total Events	alt	34	35
_ Total	null	552	538
Exposure (person/mo.)	alt	382	412

Early Termination (PET) in Months

	Min	25%	50%	75%	Max	@48
Null	13	21	27	35	48	3%
Alt	7	17	23	36	48	7%

Stratum M-

Planned Looks

Randomization: 1:1

Accrual per mo.: 6 participants

(3 E & 3 E+TT)

Stopping criteria:

 $k_1 = 1/8$ (favor null) &

 $k_2 = 8$ (favor alt)

Hypothesis Assumptions:

 H_0 : h = 1

 H_1 : h = 1.4

Baseline rates:

E: PFS = 15 months

(rate = 0.046)

E+TT: PFS = 21 months

(rate = 0.033)

		Event-ly	Monthly
Type I Error		0.10	0.01
Power		0.89	0.65*
Study Length	null	35	40
(months)	alt	32	36
Total Events	null	124	109
Total Events	alt	125	105
Total Exposure	null	3754	3277
(person/mo.)	alt	3160	2672

Early Termination (PET) in Months

	Min	25%	50%	75%	Max	@48
Null	9	32	40	48	48	34%
Alt	8	27	35	48	48	29%

Recap of monthly monitoring

Strata	Evidence Favors	Null	Alt	Stopping Month (50%) [25% to 75%]	
				Null	Alt
	E+TT	0.02	0.86	00	00
All	E	0.95	0.07	26 [20 to 33]	23 [17 to 31]
	Neither	0.03	0.07	[20 to 55]	
	E+TT	0.01	0.85	0.7	23 [17 to 36]
M+	E	0.96	80.0	27 [21 to 35]	
	Neither	0.03	0.07		
	E+TT	0.01 0.65		40	0.5
M-	E	0.65	0.06	40 [32 to 48]	35 [27 to 48]
	Neither	0.34	0.29		

Conclusions

- No formal test for marker by treatment interaction
- Accrue until desired evidence obtained or limit of resources is reached
- Design is very flexible
 - Look when you want
 - See what you see: "Pigs is pigs; Data is data" J Cornfield
- Composite alternatives yield similar results
- Trials can end with weak evidence, but it is not misinterpreted as supporting the null hypothesis