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Abstract. Building on the strength of an early work, the toxicity posterior interval (TPI)

method (Ji, Li, and Bekele, 2007a), we present a modified TPI design which is calibration-

free for phase I trials. Like the TPI method, the mTPI consists of a practical dose-finding

scheme guided by simple Bayesian models and posterior inference. However, the new method

proposes improve dose-finding decision rules based on a new statistics, the unit probability

mass (UPM). For a given interval and a probability distribution, the UPM is defined as the

ratio of the probability mass of the interval and the length of the interval. The improvement

through the use of the UPM for dose finding is three folds: 1) the mTPI method is safer

than the TPI method in that it puts fewer patients on toxic doses; 2) the mTPI method

eliminates the need for calibrating two key parameters, which is required in the TPI method

and is known difficult issue; and 3) the mTPI method corresponds to the Bayes rule under

a decision theoretic framework and possesses desirable large- and small- sample properties.

We provide user-friendly software in both Excel and R to accompany the new method.
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1 Introduction

Dose-finding trials in oncology aim to find the maximum tolerated dose (MTD). Usually a

grid of dose levels is predetermined before the trial starts. Patients are enrolled in a sequential

manner and treated at a given dose level. Based on the observed dose-limiting toxicity (DLT)

responses from enrolled patients, a decision is made to determine the dose level for treating

future patients. The trial proceeds until the maximum sample size is reached, at which time

the MTD is estimated using the DLT responses from all the enrolled patients.

Currently, the most widely used method in practice is the 3+3 method. Since the intro-

duction of the 3+3 method, a large number of statistical methods have been proposed that

attempt to improve the design of phase I dose-finding oncology trials. The most prominent

work among these is perhaps the continual reassessment method (CRM) by O’Quigley, Pepe,

and Fisher (1990) and its many variations and extensions (Babb, Rogatko, and Zacks, 1998;

Cheung and Chappell, 2000; Piantadosi, Fisher, and Grossman, 1998; Shen and O’Quigley,

1996; Yuan, Chappell, and Bailey, 2007; among others). The basic idea of the CRM is to

sequentially update the estimates of dose toxicity probabilities and assign future patients

adaptively to the dose deemed closest to the MTD.

Although model-based methods have shown to be superior to the algorithm-based 3+3

method (Thall and Lee, 2003), the simplicity of the 3+3 method still makes it by far the

most popular method chosen for practical trials. There are two main reasons for this. First,

using model-based methods to monitor a practical trial usually requires an electronic and

automatic procedure that allows nurses and physicians to obtain dose assignments in real

time when a patient needs to be treated. This is an elegant and tedious matter that calls

for a close collaboration between physicians, statisticians, and computer scientists. Second,

for most model-based designs, a common requirement is to conduct computer simulations
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before the trial starts, in which statisticians must calibrate the design parameters in order

to achieve desirable operating characteristics for the trial. For example, the classic CRM

requires the users to provide a set of prior estimates of the dose toxicity probabilities for

the candidate doses to be used in the trial. This set should be elicited from collaborating

physicians. However, the performance of the CRM under the computer simulations will

depend on the agreement of these prior estimates and the true toxicity probabilities specified

in the simulations. A poorly elicited set of prior estimates will lead to poor operating

characteristics. Therefore, tuning of the prior estimates becomes an important but sometimes

challenging and tedious process. Recent attempts (Shing and Cheung, 2009) have been made

to alleviate this issue although nontrivial calibration is still required.

Ji, Li, and Bekele (2007a) provided a framework different from the CRM. They proposed

using simple Bayesian models to describe the observed toxicity data, and introduced a set

of decision rules based on toxicity posterior intervals (TPI). Due to the simplicity of their

models, their method is implemented in an Excel spreadsheet, which greatly reduces the

burden in making dose assignments during an ongoing trial. However, the performance of

the TPI method in certain cases is sensitive to two key parameters, namely K1 and K2,

which define the toxicity intervals that are crucial elements of their method. A default set of

values was proposed in their paper, but it is unclear how sensitive their method is to changes

in these values. We have conducted simulations (results not shown) and found that different

values of K1 and K2 could lead to different results for certain cases.

In this paper, we propose a calibration-free modified TPI (mTPI) design. The imple-

mentation of the method is essentially effortless, although the underlying statistical theory

is not trivial. Implementation of the mTPI method does not require tuning of model pa-

rameters, and computer simulations can be carried out in an Excel macro in real time. In
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addition, similar to the TPI design in Ji et al. (2007a), the mTPI design is transparent in

the sense that physicians can see all the possible dose-finding decisions before the trial starts.

Consequently, patients enrolled into the trial can be allocated to appropriate doses without

conducting additional computations.

The decision rules of the mTPI design are based on a statistic named the unit probability

mass (UPM). For a given interval on the real line, the UPM is defined as the ratio of the

probability of the interval (based on a probability measure) and the length of the interval.

The mTPI method only requires a definition of an equivalence interval (EI), [pT −ε1, pT +ε2],

in which any dose is considered as a potential candidate for the true MTD. The definition

of the EI is solely obtained through consultation with the physicians. We will show that the

performance of the UPM method is robust to the definition of EI. Therefore, one does not

need to calibrate the EI for different trials and physicians. Upon determination of the EI, we

compute the mTPI of the three resulting toxicity intervals and choose one of three actions,

escalating to the higher dose, staying at the same dose, or de-escalating to the lower dose,

depending on which corresponds to the interval with the lowest UPM.

On the surface, one may see similarities between the TPI and mTPI methods. For exam-

ple, both methods propose decision rules involving the evaluation of posterior probabilities

of three intervals. Also, both methods have been implemented in Excel and R with similar

presentations. Despite these similarities, we argue that the two methods differ significantly

in two major aspects.

• First, the TPI method requires users to calibrate two parameters K1 and K2 that

affect the performance of the method. In practice, the authors of TPI have received

inquiries on how to calibrate the parameters for a real trial when the default values

do not work. The authors of TPI have yet provided a satisfactory solution on how to
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properly and efficiently calibrate these parameters for a given trial. In contrast, the

mTPI method is essentially calibration free, which means that one does not have to

calibrate the designs for different trials. Of course, this does not mean that one may

not change the settings of the mTPI method if it is necessary to do so. For example,

it is certainly feasible to modify the prior distributions if historical data are available

on the toxicity of the treatment.

• Second and more importantly, the key statistics used for posterior inference are different

between the two methods. For the TPI method, the decisions are based on the posterior

probabilities of the three intervals defined by K1, K2, and the posterior standard

deviations of the toxicity probabilities. For the mTPI method, the equivalence intervals

are prespecified before the onset of the trial and do not depend on any parameters of

the probability model. In addition, the decisions of the mTPI method are based on the

evaluation of the unit probability masses, which are not probability measures. Instead,

we show that they correspond to the Bayes rule under a decision-theoretic framework

for a given set of losses.

In Section 2, we introduce the basic idea of the mTPI method as well as the dose-finding

algorithm. In Sections 3 and 4, we present the probability models, decision rules, and

asymptotic properties of the UMP method. We comprehensively evaluate the performance

of the new method under small sample sizes and conduct sensitivity analyses in Section

5. We describe related software for Excel and R in Section 6 and provide final remarks in

Section 7.

5



2 Dose-finding method

The derivation of the dose-finding rules for the mTPI method involves two steps. In the first

step, we introduce an EI, which leads to three toxicity probability intervals that partition

(0, 1). Building upon the EI, we set up a pseudo decision-theoretic framework and derive

a Bayes rule. We show that the Bayes rule is equivalent to computing the UPM for the

toxicity probability intervals.

In this section, we first introduce the EI and then describe a general dose-finding algo-

rithm without going into technical details such as the probability model and decision rules.

In Section 3, we develop technical details including the probability models and the decision

rules.

Consider d dose levels of a certain cytotoxic drug in a phase I trial. Let pi be the unknown

probability of toxicity associated with the ith dose, i = 1, . . . , d. The toxicity probability

usually increases with the dose level, so we assume p1 < p2 < · · · < pd.

Suppose currently that dose i is used for treating patients and ni (ni ≥ 1) patients have

been treated. Suppose xi (xi ≤ ni) patients experienced toxicity. Based on the observed

values of xi and ni, we assume that physicians choose one of the following three decisions:

de-escalate (D) to the previous lower dose (i − 1); stay (S) at the same dose i; or escalate

(E) to the next higher dose (i+ 1). Depending on the decision, the next cohort is treated at

dose j ∈ {i− 1, i, i+ 1}; the values of xj and nj are then observed for the new cohort, and

an appropriate decision is chosen once again. The trial thus proceeds with the next cohort.

2.1 Equivalence interval

The EI is defined as [pT − ε1, pT + ε2], ε1, ε2 ≥ 0. It contains those doses considered so

close to the true MTD that physicians would agree to select them as the estimated MTD.
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An EI is elicited from collaborating physicians for the trial. For example, if the true MTD

has a toxicity probability pT = 0.3, then a physician may agree to select any dose between

[0.25, 0.35] as the estimated MTD. In a different trial, another physician may agree on an

EI of [0.2, 0.4]. We argue that, compared with other model-based designs, the definition

of EI does not increase the complexity of the design for phase I trials. The reason is that

for almost all the model-based methods, the probability of actually finding a real dose with

an unknown toxicity probability equal to pT is zero. Hence, an implicit measure usually is

defined for the distance in toxicity probability between a given dose and the target pT . For

example, in the CRM, such a measure is in the form of an L1 norm, i.e., |pi − pT |. Here, we

explicitly ask the physicians to express their intrinsic measure of such a distance in the form

of EIs, which seems to be more intuitive. A simple guide for elicitation of the EI is provided

below.

• Ask the physician to indicate the lowest toxicity probability that he/she would be com-

fortable to continue treating future patients without dose escalation. This determines

pT − ε1.

• Ask the physician to indicate the highest toxicity probability that he/she would be

comfortable to continue treating future patients without dose de-escaltion. This deter-

mines pT + ε2.

2.2 Dose-finding algorithm

Defining an EI results in the partition of the unit interval (0, 1) into three subintervals;

(0, pT − ε1), [pT − ε1, pT + ε2], and (pT + ε2, 1). Doses in these three intervals are deemed

lower, close to, and higher than the MTD, respectively. With this clarification, we propose

a dose-finding algorithm next. The core of the algorithm is simple: Suppose dose i is
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the dose currently used to treat patients. Compute the UPM for the three subintervals

above. Treat the next (cohort of) patients at dose (i− 1), i, or (i+ 1) if interval (0, pT − ε1),

[pT − ε1, pT + ε2], or (pT + ε2, 1) has the largest UMP, respectively. Continue until the sample

size limit is reached. Figure 1 provides an illustration of how the UPM is associated with

dose-finding decisions for an EI.

A dose-finding algorithm with additional safety rules is given below. These additional

rules are important for practical concerns. See a full discussion of these rules in Ji et al.

(2007a).

• Suppose that the current tried dose is i, i ∈ {1, · · · , d}. After the toxicity outcomes of

the last cohort are observed, choose E, S, orD if the interval (0, pT−ε1), [pT−ε1, pT+ε2],

or (pT + ε2, 1) has the largest UPM, respectively.

• Safety rule 1 (early termination): Suppose that dose 1 has been used to treat patients.

If Pr(p1 > pT |data) > ξ for a ξ close to 1 (say, ξ = 0.95), then terminate the trial due

to excessive toxicity. Otherwise, terminate the trial when the maximum sample size is

reached.

• Safety rule 2 (dose exclusion): Suppose that the decision is E, to escalate from dose i

to (i+ 1). If Pr(pi+1 > pT |data) > ξ, for a ξ close to 1 (say, ξ = 0.95), then treat the

next cohort of patients at dose i instead of (i+ 1) and exclude doses (i+ 1) and higher

from the trial, i.e., these doses will never be used again in the trial.

• At the end of the trial, select as the estimated MTD the dose with the smallest differ-

ence |p̂i − pT | among all the tried doses i for which Pr(pi > pT |data) <= ξ. Here p̂i

is a sensible estimate of pi, e.g., the isotonically transformed posterior mean (Ji et al.,
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2007a). If two or more doses tie for the smallest difference, perform the following rule.

Let p̂∗ denote the p̂i of the tied doses.

– If p̂∗ < pT , choose the highest dose among the tied doses.

– If p̂∗ > pT , choose the lowest dose among the tied doses.

3 Probability model

We now focus our attention on technical details of the method. In this section, we provide

a statistical framework that leads to the above dose-finding algorithm.

First, we propose a set of penalty functions for choosing a proper decision from among

D, S, or E, which is similar to the one in Ji et al. (2007b). For dose i, define the penalty

functions

L(D, pi) =


KD, if − ε1 ≤ pi − pT ≤ ε2;

0, if pi − pT > ε2;

ND, if pi − pT < −ε1;

L(S, pi) =


0, if − ε1 ≤ pi − pT ≤ ε2;

MS, if pi − pT > ε2;

NS, if pi − pT < −ε1;

L(E, pi) =


KE, if − ε1 ≤ pi − pT ≤ ε2;

ME, if pi − pT > ε2;

0, if pi − pT < −ε1.

The six penalties KD, KE, MS, ME, NS, and ND are positive real numbers. For example,

quantities KD or ND are the penalties for choosing decision D (de-escalate) when dose i is

either within the EI or lower than (pT − ε1). The values of MS, NS, KE, and ME can be

interpreted similarly. We assign a zero penalty for choosing the right decision.
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We derive a straightforward decision rule for dose finding based on posterior expected

penalties. Let X = {(x1, n1), . . . , (xd, nd)} be the accumulated data in which ni patients

have been treated at dose i and xi of them have experienced toxicities, for i = 1, . . . , d. The

information set corresponding to X is a σ-algebra, F = σ(X ). The likelihood is the product

of the d binomial probability mass functions defined by (x1, n1), . . . , (xd, nd). Suppose that

the prior distribution for the vector p = (p1, . . . , pd)
′ has a density π(p). Define

R(D, pi) = E{L(D, pi)|F}, R(S, pi) = E{L(S, pi)|F}, and R(E, pi) = E{L(E, pi)|F}

as the three posterior expected penalties corresponding to π(p). Let

qDi = Pr(pi−pT > ε2|F), qSi = Pr(−ε1 ≤ pi−pT ≤ ε2|F), and qEi = Pr(pi−pT < −ε1|F);

then

R(D, pi) = KDqSi +NDqEi; R(S, pi) = MSqDi +NSqEi; and R(E, pi) = KEqSi +MEqDi.

(1)

The Bayes rule that achieves the minimum posterior expected penalty is given by

Bi = arg min
m∈{D,S,E}

R(m, pi). (2)

The performance of the Bayes rule depends on the prior distribution of the pi and the six

penalties. Our approach is to use a simple prior and then specify a sensible set of penalties

for that prior. To start, we assume an independent uniform prior for pi. Note that this is

a special case of the proposed beta priors in Ji et al. (2007a), which contains a detailed

discussion of the priors for phase I designs. Under the uniform prior, we set the six penalties

at

KD = KE =
1

ε2 + ε1
, MS = ME =

1

1− pT − ε2
, ND = NS =

1

pT − ε1
, (3)
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which possess the following property.

Proposition 1. Under the uniform prior of pi and the penalties in (3), the prior expected

penalties for D, E, and S are the same.

The proof is straightforward and omitted. Proposition 1 implies that the uniform prior

and the set of penalties in (3) are “unbiased” a priori in that one does not prefer any of the

three actions over the others before the trial starts.

Linking to the UPM: It is immediate that given the penalties in (3), the three

posterior expected penalties R(D, pi), R(S, pi), and R(E, pi) equal (1− the unit probability

masses) for the intervals (0, pT − ε1), [pT − ε1, pT + ε2], and (pT + ε2, 1). Therefore, the Bayes

rule Bi chooses E, S, or D if the interval (0, pT − ε1), [pT − ε1, pT + ε2], or (pT + ε2, 1) has the

largest UPM. In words, the mTPI design proposed in Section 2 is equivalent to the Bayes

rule Bi under the decision-theoretic framework above with penalties given in (3).

4 Asymptotic properties

The following propositions ensure that with a large sample size the mTPI design will always

make the right decision. While this does not guarantee any good properties in the case of

small sizes (such as in dose-finding trials), it ensures that the mTPI design is theoretical

sound.

Proposition 2. For any ε1 > 0 and ε2 > 0,

• if pi0 ∈ [pT − ε1, pT + ε2], then there exists N > 0, when ni > N , Bi = S a.s;
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• if pi0 < pT − ε1, then there exists N > 0, when ni > N , Bi = E a.s;

• if pi0 > pT + ε2, then there exists N > 0, when ni > N , Bi = D a.s;

The proof of Proposition 2 is given in Appendix A. This proposition states that when the

sample size is large, the mTPI method will choose the correct dose-finding action. For

example, when the true toxicity probability of dose i is in the EI, asymptotically the mTPI

method will always choose to stay at dose i.

Theorem 1. Among all the doses specified in the trial, if there exists a unique dose i such

that pi0 ∈ [pT − ε1, pT + ε2], then there exists N > 0, when the number of patients treated

in the trial is larger than N , all the future patients will be treated at dose i.

Proof of Theorem 1 is immediate based on Proposition 2. The results of Theorem 1 are

self-explanatory.

5 Simulation study

We conducted extensive simulation studies and sensitivity analyses with comparisons to

established methods. We present the simulation results in subsections, with each focusing

on one aspect of the mTPI design. In addition, we performed simulation studies for a second

trial with different setups. The results are summarized in Appendix B and Table 4.
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5.1 Overall performance

Based on a previous clinical trial described in Goodman (1995), we examined the overall

performance of the mTPI design. The trial had eight doses with a maximum sample size

of 30 patients. We compared our method to their method, as well as the 3+3 method and

the CRM. The performance of the 3+3 method is much worse than the other methods. For

simplicity, we will not present the results for the 3+3 methods.

Table 1 shows that the mTPI method exhibits desirable operating characteristics com-

pared to its major competitors. Keep in mind that the mTPI method is much easier to

implement. We used ε1 = ε2 = 0.05, which was arbitrary. A sensitivity analysis in the next

section will demonstrate the robustness of the method to the choices of ε’s. In working with

other methods we had to manually calibrate some design parameters to achieve desirable

performance. For example, we had to choose a set of eight prior toxicity probabilities using

the CRM. Because we did not know where to start, we tried several arbitrary sets of toxicity

probabilities and chose the one that gave a reasonable performance (in our opinion). In par-

ticular, for the CRM we specified the prior toxicity probability for dose i to be qi = 0.05 ∗ i.

For the TPI method in Ji et al (2007a), we used the recommended parameter values K1 = 1

and K2 = 1.5, which were calibrated by the original authors of the paper.

We now summarize key findings from Table 1. First, the CRM is inferior for Scenario 3

in which there is a large gap between the true toxicity probabilities of adjacent doses. This is

due to the mismatch between the underlying dose-response model for the CRM and the true

toxicity probabilities specified in the scenario. Second, the mTPI method treats on average

fewer patients at doses higher than the MTD than the other two methods, while maintaining

about the same or higher numbers of patients at the MTD (Figure 2). The exceptions are

Scenarios 5 and 6, in which the CRM is slightly better since the set of prior probabilities we
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used is close to the true toxicity probabilities. Third, in all but one scenarios, the toxicity

percentage of the mTPI is the lowest among the three methods, indicating that it is the

safest design. Considering that the mTPI method is the simplest method operationally,

these results are particularly encouraging.

5.2 Sensitivity analyses

We conducted additional sensitivity analysis for the mTPI method. First, we varied the

values of the ε’s and reran the computer simulations for all the five scenarios. For simplicity,

we arbitrarily choose Scenario 1 and present the simulation results in Table 2. The results

demonstrate the robustness of the method to different values of ε’s at two extremes, one with

large ε’s and the other with small values. This is not surprising because, by definition, the

method compares per-unit probability mass for an interval and is therefore robust to how

wide the interval is; however it is reassuring to observe the simulation results seen in the

table.

Second, fixing ε1 = ε2 = 0.05 we tried different beta prior distributions for the mTPI.

Since the penalties of the mTPI method are calibrated for the uniform prior (or beta(1,1)),

we obtained the best performance under this prior. However, the performance of the mTPI

method under other priors is not terrible, although it is worse than the uniform prior. Again,

for simplicity, we only presented the results for Scenario 1 in Table 3. We note that when

strong prior information is available, one can use a more informative prior distribution for

the mTPI method. However, usually little prior information is known about the toxicity of

the treatments in phase I trials, as they typically involve novel therapies.
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6 Software

The mTPI method is available in both Excel and R programs. In the Excel program, the

method is presented in a macro with an addin file. The Excel program contains a dose-

finding table that consists of all the possible dose-finding actions for a given trial. Figure 3

presents a screenshot of the table. To use the macro, one needs to provide the sample size,

the EI, and the toxicity probability pT of the MTD. Then by clicking a button we embedded

in Excel, a table in the form shown in Figure 3 will be generated. Using this table, one can

carry out all the dose assignments throughout a trial without needing to conduct additional

computations again. For example, suppose patients are being treated at dose i with xi DLTs

observed out of ni patients. In the Excel table, locate the row and column that correspond to

xi and ni, respectively. The appropriate decision is given by the letter in the corresponding

cell of the Excel table. Thus, if xi = 1 out of ni = 3 patients have experienced DLT, then

the decision is “S”, to stay at the current dose. Note that these decisions do not depend

on dose level i. That is why we only need to provide one table to carry out dose-finding

decisions at various doses. In the second page of the Excel macro (not shown), we embedded

other buttons to conduct computer simulations similar to those shown in Table 1. Results

for, say, 5,000 simulations are usually obtained in a few seconds.

We also provide R functions with the same capabilities. Both Excel and R programs are

available to download at http://odin.mdacc.tmc.edu/∼yuanj/.

7 Final remarks

We want to re-emphasize the importance of simplicity for a model-based dose-finding design.

We believe that the simplicity of the method for early phase trials is the dominating factor
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that decides whether the method will be embraced by physicians in practice. This not only

involves the availability of software, but also the amount of effort required to monitor a trial.

For example, the CRM has been implemented by many researchers with available software

for conducting simulations. However, physicians still need to work closely with statisticians

and computer scientists in order to make dose assignment decisions whenever a patient must

be treated. At M.D. Anderson Cancer Center, the biostatistical group usually sets up a web

interface allowing physicians to input patients characteristics and trial data. In return, the

website outputs the dose assignment for the next patient. This is viewed as a black box,

which sometimes make physicians skeptical and uncomfortable. Perhaps the most attractive

feature of the TPI and the mTPI is the availability of the Excel spreadsheet that frees

physicians from additional burdens needed to make dose assignment decisions.

Under the mTPI, the specification of ε1 and ε2 will not be determined by computer

simulations. It is a fully subjective decision made by physicians. We highly recommend the

use of this interval in practice because it is almost never the case that a prespecified dose

in the trial happens to have a toxicity probability exactly equal to pT . Usually, a dose close

enough is selected and the specification of this interval formally defines “how close is close.”

A special case in practice involves trials with a cohort size of one. We generally do not

recommend making a dose-finding decision on any dose when fewer than two patients are

treated. However, our software did not build this rule into the computer code. We do not

expect many practical trials with a cohort size of one because it takes a long time to complete

such trials and there is not much of an advantage over using cohort sizes larger than one. If

needed, one can simply modify our code and add a rule to only invoke dose finding after at

least two patients have been treated at a given dose.
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Appendix A

Proof of Proposition 2: Given the prior density π(p) and the binomial likelihood, the poste-

rior density of p is given by

f(p|data) ∝
d∏
i=1

pxi
i (1− pi)ni−xiπ(p). (4)

Define the “generalized” observed Fisher information matrix, denoted by Iπ, as follows:

Iπij = − ∂2

∂pi∂pj
log f(p|data)|p=p̃, i, j = 1, . . . , d,

where p̃ is the posterior mode of p. By the Bayesian central limit theorem (Carlin and Louis

2000, P. 122), when ni is large for i = 1, . . . , d,

p|data
·∼MVNd(p̃, {Iπ}−1),
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where MVNd denotes a d-dimensional multivariate normal distribution. By the Cramér-

Wold Device (Sen and Singer 1993, P. 106),

pi|data
·∼ N(p̃i, σ

2
i ), (5)

where p̃i is the ith component of p̃ and σ2
i is the (i, i)th element of {Iπ}−1. Under suitable

regularity conditions, the posterior mode p̃ is consistent (Gelman et al., P. 106). Because

the first and second partial derivatives of π(p) are bounded in the neighborhood of p0, when

p̃ is close to p0, it follows that for i 6= j

Iπij = − ∂2

∂pi∂pj
log π(p)|p=p̃

are bounded, and

Iπii =
(ni − xi)p̃2

i + (p̃i − 1)2x2
i

p̃2
i (1− p̃i)2

− ∂2

∂p2
i

log π(p)|p=p̃

goes to ∞ as ni goes to ∞. Let λj be the jth eigenvalue of Iπ with associated eigenvector

xj, the fact that λj = x′jI
πxj/x

′
jxj implies that λj → ∞, for j = 1, . . . , d. Hence σ2

j → 0,

j = 1, . . . , d. Combined with the consistency of p̃, the result in (5), and that pi0 = pT , as

ni →∞,

P (pT − ε1 ≤ pi ≤ pT + ε2|data)→ 1, a.s.,

for any ε1 > 0 and ε2 > 0.

Appendix B

Additional simulation results are summarized in Table 4 for a trial with five doses. The

target rate pt = 0.1.
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Table 1: Simulation results comparing the proposed mTPI method, the TPI, and the CRM.

The selection percentages for the true MTDs are in bold face.

Recommendation percentage at dose level Toxicity Average

pT = 0.25 percentage∗ number of

Dose 1 2 3 4 5 6 7 8 patients

Scenario 1 5 25 50 60 70 80 90 95 none

mTPI % MTD 14 78 8 0 0 0 0 0 0 24 30

# Pts 7.1 18.3 4.4 0.2 0 0 0 0

TPI % MTD 13 79 8 0 0 0 0 0 0 25 30

# Pts 7.7 16.1 5.8 0.5 0 0 0 0

CRM % MTD 6 83 11 0 0 0 0 0 0 27 30

# Pts 5.7 18.6 4.9 1.0 0 0 0 0

Scenario 2 1 2 3 4 5 25 50 60 none

mTPI % MTD 0 0 0 2 16 71 10 1 0 16 30

# Pts 3.2 3.5 3.5 4.0 5.2 8.1 2.3 0.1

TPI % MTD 0 0 0 0 19 70 11 0 0 15 30

# pt 3.2 3.2 3.3 3.6 5.0 8.0 3.3 0.3

CRM % MTD 0 0 1 1 20 61 16 2 0 16 30

# pt 3.1 3.4 3.3 3.7 4.7 7.0 3.8 0.9
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Table 1 (continued)

Recommendation percentage at dose level Toxicity Average

pT = 0.25 percentage∗ number of

Dose 1 2 3 4 5 6 7 8 patients

Scenario 3 1 5 50 60 70 80 90 95 none

mTPI % MTD 0 82 17 0 0 0 0 0 0 21 30

# pt 3.2 15.9 10.3 0.6 0 0 0 0

TPI % MTD 0 79 21 0 0 0 0 0 0 22 30

# pt 5.5 13.2 10.2 1.0 0 0 0 0

CRM % MTD 0 49 51 0 0 0 0 0 0 26 30

# pt 3.1 13.0 12.0 1.8 0 0 0 0

Scenario 4 40 50 60 70 80 90 95 99 none

mTPI % MTD 31 2 0 0 0 0 0 0 67 41 19

# pt 16.8 2.0 0.2 0 0 0 0 0

TPI % MTD 31 2 0 0 0 0 0 0 67 41 19

# pt 16.8 1.8 0.2 0 0 0 0 0

CRM % MTD 47 2 0 0 0 0 0 0 51 42 23

# pt 20.2 2.5 0.2 0 0 0 0 0
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Table 1 (continued)

Recommendation percentage at dose level Toxicity Average

pT = 0.25 percentage∗ number of

Dose 1 2 3 4 5 6 7 8 patients

Scenario 5 15 25 35 45 55 65 75 85 none

mTPI % MTD 29 45 20 4 0 0 0 0 0 24 30

# pt 12.4 10.9 5.0 1.1 0.1 0 0 0

TPI % MTD 31 41 21 7 0 0 0 0 0 24 30

# pt 12.4 9.5 5.5 1.9 0.3 0 0 0

CRM % MTD 36 47 14 2 0 0 0 0 0 24 30

# pt 13.8 11.4 3.6 0.9 0.2 0 0 0

Scenario 6 5 15 25 35 45 55 65 75 none

mTPI % MTD 2 28 42 23 4 0 0 0 0 20 30

# pt 4.9 10.2 9.3 4.5 0.9 0.1 0 0

TPI % MTD 2 24 42 24 7 0 0 0 0 22 30

# pt 5.1 8.2 9.2 5.7 1.6 0.3 0 0

CRM % MTD 4 37 45 12 2 0 0 0 0 20 30

# pt 5.5 11.5 8.9 3.4 0.7 0.1 0 0

∗ Overall % toxicity out of all the simulated trials.
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Table 2: Simulation results of the mTPI using different ε1 and ε2 values. The selection

percentages for the true MTDs are in bold face.

Recommendation percentage at dose level Toxicity Average

pT = 0.25 percentage∗ number of

Dose 1 2 3 4 5 6 7 8 patients

Scenario 1 5 25 50 60 70 80 90 95 none

ε1 = ε2 = .05 % MTD 14 78 8 0 0 0 0 0 0 24 30

# Pts 7.1 18.3 4.4 0.2 0 0 0 0

ε1 = ε2 = .2 % MTD 15 76 9 0 0 0 0 0 0 24 30

# Pts 7.7 18.4 3.7 0.2 0 0 0 0

ε1 = ε2 = .001 % MTD 14 78 8 0 0 0 0 0 0 24 30

# Pts 7.1 18.3 4.3 0.2 0 0 0 0
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Table 3: Simulation results comparing the results of the mTPI method with ε1 = ε2 = 0.05

using different beta prior distributions Beta(a, b). The selection percentages for the true

MTDs are in bold face.

Recommendation percentage at dose level Toxicity Average

pT = 0.25 percentage∗ number of

Dose 1 2 3 4 5 6 7 8 patients

Scenario 1 5 25 50 60 70 80 90 95 none

a = b = 1 (default) % MTD 15 76 9 0 0 0 0 0 0 24 30

# Pts 7.7 18.4 3.7 0.2 0 0 0 0

a = b = .05 % MTD 15 76 8 1 0 0 0 0 0 27 30

# Pts 6.3 17.1 6.0 0.5 0 0 0 0

a = 1, b = 3 % MTD 9 77 12 1 0 0 0 0 0 29 30

# Pts 4.9 16.9 7.5 0.6 0 0 0 0

a = .1, b = .3 % MTD 16 73 10 0 0 0 0 0 0 31 30

# Pts 5.1 14.2 7.4 2.4 0.7 0 0 0
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Table 4: Simulation results comparing the results of the mTPI with ε1 = ε2 = 0.05 for a trial

with five dose levels and a maximum sample size of 21 patients. The cohort size is three.

Recommendation percentage at dose level Toxicity Average

pT = 0.10 percentage∗ number of

Dose 1 2 3 4 5 patients

Scenario 1 1 10 20 40 50 none

% MTD 20 49 28 3 0 0 12 21

# Pts 5.4 8.5 5.2 1.6 0.3

Scenario 2 1 1 10 30 50 none

% MTD 4 18 64 14 0 0 12 21

# Pts 3.8 4.9 7.5 3.8 0.8

Scenario 3 10 30 50 60 60 none

% MTD 75 8 0 0 0 17 18 19

# Pts 12.4 5.5 1.0 0.1 0

Scenario 4 40 50 60 70 80 none

% MTD 5 0 0 0 0 95 42 7

# Pts 12.4 5.5 1.0 0.1 0
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UPM for  
(0,  p_T – epsilon_1) 
 

UPM for  
(p_T – epsilon_1, p_T+epsilon_2) 

UPM for  
(pT+epsilon_2, 1) 

Figure 1. A demonstration of the UPMs for three intervals. The two vertical lines results in

three intervals on the X-axis. The UPM for each of the three intervals is indicated by the

dashed horizontal line. The equivalence interval in the middle has the highest UPM under

the distribution defined by the density curve.
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1. At the MTD 
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2. All doses higher than the MTD  
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Figure 2 (colored). Summary of the number of patients treated at the MTD (upper panel)

and at doses higher than the MTD (lower panel).
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Figure 3 (colored). A screenshot of the Excel macro for the mTPI method. The table

is uniquely determined upon specification of the sample size, the EI, and pT . The letters

in different colors are computed based on the decision rules under the mTPI method and

represent different dose-finding actions. In addition to actions D, S, and E, the table includes

action U , which is defined as the execution of the dose exclusion rule in the proposed dose-

finding algorithm.
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