Web-Based Supporting Material for "A marginalized zero-inflated negative binomial model for spatial data: modeling COVID-19 deaths in Georgia" by Fedelis Mutiso, Hong Li, John L. Pearce, Sara E. Benjamin-Neelon, Noel T. Mueller, and Brian Neelon

Appendix A: Social Vulnerability Index Components Variables

Table S 1: Social Vulnerability Index themes and variables. The 15 SVI variables are obtained from the 2016-2020 American Community Survey of the U.S.

SVI Theme	Variables
Socioeconomic Status	Percentage below poverty Percentage unemployed Per capita income Percentage with no high school diploma
	Percentage age 65 and older Percentage age 17 or younger Percentage age 5 years or older with a disability Minority Status \& Language Housing Type \& Transportation of single-parent households
	Percentage minority Percentage who speaks english "less than well"
	Percentage of multi-unit structures Percentage of mobile homes
	Percentage crowding Percentage having no vehicle Percentage of group quarters

Appendix B: MCMC Algorithm

1. Update the latent at-risk indicators $z_{11}, \ldots, z_{1 T}, \ldots, z_{n 1}, \ldots, z_{n T}$ for the binary component. The generic form of the spatiotemporal marginalized ZINB model is similar to the model given in equation (1) of the main manuscript. That is
 "at-risk" on day t) with prior probability
$\psi_{i t}=\exp \left(\boldsymbol{w}_{i t}^{T} \boldsymbol{\gamma}+\phi_{1 i}+f_{1}(t)\right) /\left[1+\exp \left(\boldsymbol{w}_{i t}^{T} \boldsymbol{\gamma}+\phi_{1 i}+f_{1}(t)\right)\right]$ and $z_{i t}=0$ otherwise. Now, if $y_{i t}>0$, then county i is in the at-risk class on day t but otherwise on the structural class implying that $y_{i t}=0$. Thus, given $y_{i t}>0$, we set $z_{i t}=1$. Conversely, if $y_{i t}=0$, then we observe either a structural zero (implying $z_{i t}=0$) or an at-risk zero (implying $z_{i t}=1$). In this case, we draw $z_{i t}$ from a Bernoulli distribution with probability $\theta_{i t}$, where $\theta_{i t}$ is given by

$$
\begin{aligned}
\theta_{i t}=\operatorname{Pr}\left(z_{i t} \mid y_{i t}=0, \text { rest }\right) & =\frac{\operatorname{Pr}\left(z_{i t}=1 \cap y_{i t}=0\right)}{\operatorname{Pr}\left(y_{i t}=0\right)} \\
& =\frac{\operatorname{Pr}\left(y_{i t}=0 \mid z_{i t}=1\right) \operatorname{Pr}\left(z_{i t}=1\right)}{\operatorname{Pr}\left(y_{i t}=0 \mid z_{i t}=1\right) \operatorname{Pr}\left(z_{i t=1}\right)+\operatorname{Pr}\left(y_{i t}=0 \mid z_{i t}=0\right) \operatorname{Pr}\left(z_{i t=0}\right)},
\end{aligned}
$$

where $\operatorname{Pr}\left(y_{i t}=0 \mid z_{i t}=1\right)$ is the probability of observing a zero under the negative binomial model (at-risk zero) which is $\left(1-q_{i t}\right)^{r}$, where $q_{i t}=r \psi_{i t} /\left(\nu_{i t}+r \psi_{i t}\right)$ and $\nu_{i t}$ is defined in equation (7) of the main manuscript. Additionally, $\operatorname{Pr}\left(y_{i t}=0 \mid z_{i t}=0\right)=1$, since, in this case, county i belongs to the structural class on day t and hence $y_{i t}=0$ with probability 1 . Thus, we have

$$
\begin{aligned}
\theta_{i t} & =\frac{\operatorname{Pr}\left(y_{i t}=0 \mid z_{i t}=1\right) \operatorname{Pr}\left(z_{i t}=1\right)}{\operatorname{Pr}\left(y_{i t}=0 \mid z_{i t}=1\right) \operatorname{Pr}\left(z_{i t=1}\right)+\operatorname{Pr}\left(y_{i t}=0 \mid z_{i t}=0\right) \operatorname{Pr}\left(z_{i t=0}\right)} \\
& =\frac{\left(1-q_{i t}\right)^{r} \psi_{i t}}{\left(1-q_{i t}\right)^{r} \psi_{i t}+1 .\left(1-\psi_{i t}\right)} \\
& =\frac{\psi_{i t}\left(1-q_{i t}\right)^{r}}{1-\psi_{i t}\left[1-\left(1-q_{i t}\right)^{r}\right]}
\end{aligned}
$$

2. Update $\omega_{i t}$: From Polson et al. (2013), the conditional distribution of $\omega_{i t}$ given $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\phi}_{1}$ is $p\left(\omega_{i t} \mid \boldsymbol{\theta}_{1}, \boldsymbol{\phi}_{1}\right) \stackrel{d}{=} \mathrm{PG}\left(1, \boldsymbol{l}_{i t}^{T} \boldsymbol{\theta}_{1}+\phi_{1 i}\right)$ where $\boldsymbol{l}_{i t}$ is a $(p+K) \times 1$ vector of fixed and spline effects for the binary part. Thus, draw $\omega_{i t}(i=1, \ldots, n ; t=1, \ldots, T)$ independently from $\operatorname{PG}\left(1, \boldsymbol{l}_{i t}^{T} \boldsymbol{\theta}_{1}+\phi_{1 i}\right)$ using the accept-reject algorithm described in Polson et al. (2013), which can be implemented using the R package BayesLogit.
3. Update $\boldsymbol{\theta}_{1}$: Given $\boldsymbol{\omega}=\left(\omega_{11}, \ldots, \omega_{1 T}, \ldots, \omega_{n 1}, \ldots, \omega_{n T}\right)^{T}$, $\boldsymbol{\Phi}_{1}=\left(\phi_{11}, \ldots, \phi_{1 n}\right)^{T}$, and
the at-risk indicators $\boldsymbol{z}=\left(z_{11}, \ldots, z_{1 T}, \ldots, z_{n 1}, \ldots, z_{n T}\right)^{T}$, the full conditional for $\boldsymbol{\theta}_{1}$ is given by

$$
\begin{align*}
p\left(\boldsymbol{\theta}_{1} \mid z_{i t}, \omega_{i t}, \phi_{1 i}\right) & \propto \pi\left(\boldsymbol{\theta}_{1}\right) \prod_{i=1}^{n} \prod_{t=1}^{T} p\left(z_{i t} \mid \boldsymbol{\theta}_{1}, \omega_{i t}, \phi_{1 i}\right) p\left(\omega_{i t} \mid \boldsymbol{\theta}_{1}, \phi_{1 i}\right) \\
& \propto \pi\left(\boldsymbol{\theta}_{1}\right) \prod_{i=1}^{n} \prod_{t=1}^{T} \frac{\exp \left(\boldsymbol{l}_{t t}^{T} \boldsymbol{\theta}_{1}+\phi_{1 i}\right)^{z_{i t}}}{1+\exp \left(\boldsymbol{l}_{i t}^{T} \boldsymbol{\theta}_{1}+\phi_{1 i}\right)} p\left(\omega_{i t} \mid \boldsymbol{\theta}_{1}, \phi_{1 i}\right) \tag{1}
\end{align*}
$$

Next, we make use of the following two properties of PG density detailed in Polson et al. (2013). First, for $a \in \mathfrak{R}$ and $\eta \in \mathfrak{R}$, it follows that

$$
\frac{\left(\mathrm{e}^{\eta}\right)^{a}}{\left(1+\mathrm{e}^{\eta}\right)^{b}}=2^{-b} \mathrm{e}^{\kappa \eta} \int_{0}^{\infty} \mathrm{e}^{-\omega \eta^{2} / 2} p(\omega \mid b, 0) \mathrm{d} \omega
$$

where $\kappa=a-b / 2$ and $p(\omega \mid b, 0)$ denotes a $\operatorname{PG}(b, 0)$ density. Second, the conditional distribution $p(\omega \mid b, c) \sim \operatorname{PG}(b, c)$ follows from an "exponential tilting" of the $\operatorname{PG}(b, 0)$ density:

$$
\begin{aligned}
p(\omega \mid b, c) & =\frac{\exp \left(-c^{2} \omega / 2\right) p(\omega \mid b, 0)}{\mathrm{E}_{\omega}\left[\exp \left(-c^{2} \omega / 2\right)\right]} \\
& =\frac{\exp \left(-c^{2} \omega / 2\right) p(\omega \mid b, 0)}{\int_{0}^{\infty} \mathrm{e}^{-c^{2} \omega / 2} p(\omega \mid b, 0) \mathrm{d} \omega}
\end{aligned}
$$

Applying the above properties, we get

$$
\begin{aligned}
p\left(\boldsymbol{\theta}_{1} \mid z_{i t}, \omega_{i t}, \phi_{1 i}\right) & \propto \pi\left(\boldsymbol{\theta}_{1}\right) \prod_{i=1}^{n} \prod_{t=1}^{T}\left[\mathrm{e}^{\kappa_{i t} \eta_{i t}} \int_{0}^{\infty} \mathrm{e}^{-\omega_{i t} \eta_{i t}^{2} / 2} p\left(\omega_{i t} \mid 1,0\right) \mathrm{d} \omega_{i t}\right] \\
& \times \frac{\mathrm{e}^{-\eta_{i t}^{2} \omega_{i t} / 2} p\left(\omega_{i t} \mid 1,0\right)}{\int_{0}^{\infty} \mathrm{e}^{-\eta_{i t}^{2} \omega_{i t} / 2} p\left(\omega_{i t} \mid 1,0\right) \mathrm{d} \omega_{i t}}
\end{aligned}
$$

where from equation (11) and property $1, \kappa_{i t}=z_{i t}-1 / 2$. Continuing, we have

$$
\begin{aligned}
p\left(\boldsymbol{\theta}_{1} \mid z_{i t}, \omega_{i t}, \phi_{1 i}\right) & \propto \pi\left(\boldsymbol{\theta}_{1}\right) \prod_{i=1}^{n} \prod_{t=1}^{T} \mathrm{e}^{\kappa_{i t} \eta_{i t}} \mathrm{e}^{-\omega_{i t} \eta_{i t}^{2} / 2} p\left(\omega_{i t} \mid 1,0\right) \\
& \propto \pi\left(\boldsymbol{\theta}_{1}\right) \prod_{i=1}^{n} \prod_{t=1}^{T} \mathrm{e}^{\kappa_{i t} \eta_{i t}} \mathrm{e}^{-\omega_{i t} \eta_{i t}^{2} / 2} \text { since } p\left(\omega_{i t} \mid 1,0\right) \text { is constant w.r.t } \boldsymbol{\theta}_{1} \\
& \propto \pi\left(\boldsymbol{\theta}_{1}\right) \prod_{i=1}^{n} \prod_{t=1}^{T} \mathrm{e}^{-\frac{\omega_{i t}}{2}\left[\eta_{i t}^{2}-2 \eta_{i t} \frac{\kappa_{i t}}{\omega_{i t}}\right]} \\
& \propto \pi\left(\boldsymbol{\theta}_{1}\right) \prod_{i=1}^{n} \prod_{t=1}^{T} \mathrm{e}^{-\frac{\omega_{i t}}{2}\left[\eta_{i t}^{2}-2 \eta_{i t} z_{i t}^{*}\right]}
\end{aligned}
$$

where $z_{i t}^{*}=\frac{\kappa_{i t}}{\omega_{i t}}=\frac{z_{i t}-1 / 2}{\omega_{i t}}$. Completing the square we get,

$$
\begin{aligned}
p\left(\boldsymbol{\theta}_{1} \mid z_{i t}, \omega_{i t}, \phi_{1 i}\right) & \propto \pi\left(\boldsymbol{\theta}_{1}\right) \prod_{i=1}^{n} \prod_{t=1}^{T} \mathrm{e}^{\left\{-\frac{\omega_{i t}}{2}\left[\eta_{i t}^{2}-2 \eta_{i t} z_{i t}^{*}+z_{i t}^{* *}\right]\right\}} \\
& \propto \pi\left(\boldsymbol{\theta}_{1}\right) \prod_{i=1}^{n} \prod_{t=1}^{T} \mathrm{e}^{\left\{-\frac{\omega_{i t}}{2}\left(z_{i t}^{*}-\eta_{i t}\right)^{2}\right\}} \\
& \propto \pi\left(\boldsymbol{\theta}_{1}\right) \exp \left[-\frac{1}{2}\left(\boldsymbol{z}^{*}-\boldsymbol{\eta}\right)^{T} \boldsymbol{\Omega}\left(\boldsymbol{z}^{*}-\boldsymbol{\eta}\right)\right]
\end{aligned}
$$

where \boldsymbol{z}^{*} is an $N \times 1$ vector with $i t$-th element $z_{i t}$, where $N=n T$ is the total number of observations; $\boldsymbol{\eta}$ is an $N \times 1$ mean vector with $i t$-th element $\eta_{i t}=\boldsymbol{l}_{i t}^{T} \boldsymbol{\theta}_{1}+\phi_{1 i}$;
$\boldsymbol{\Omega}=\operatorname{diag}(\boldsymbol{\omega})$ is an $N \times N$ diagonal matrix of PG precisions. The last expression is kernel of a $\mathrm{N}_{N}\left(\boldsymbol{\eta}, \boldsymbol{\Omega}^{-1}\right)$ density. Thus, assuming a $\mathrm{N}_{p+K}\left(\boldsymbol{\theta}_{0}, \boldsymbol{V}_{0}\right)$ prior for $\boldsymbol{\theta}_{1}$ and applying standard Bayesian linear regression results, the conjugate full conditional for $\boldsymbol{\theta}_{1}$ given $\boldsymbol{z}^{*}, \boldsymbol{\Phi}_{1}$, and $\boldsymbol{\omega}$ is $\mathrm{N}_{p+K}(\boldsymbol{\mu}, \boldsymbol{V})$ where

$$
\begin{aligned}
\boldsymbol{V} & =\left(\boldsymbol{V}_{0}^{-1}+\boldsymbol{L}^{T} \boldsymbol{\Omega} \boldsymbol{L}\right)^{-1} \\
\boldsymbol{\mu} & =\boldsymbol{V}\left[\boldsymbol{V}_{0}^{-1} \boldsymbol{\theta}_{0}+\boldsymbol{L}^{T} \boldsymbol{\Omega}\left(\boldsymbol{z}^{*}-\boldsymbol{L}^{*} \boldsymbol{\Phi}_{1}\right)\right]
\end{aligned}
$$

and \boldsymbol{L} is an $N \times(p+K)$ design matrix for the fixed-effect covariates and B-spline basis functions for the binary part and

$$
\underset{N \times n}{\boldsymbol{L}^{*}}=\left(\begin{array}{cccccc}
1_{1} & 0 & 0 & \ldots & 0 & 0 \\
1_{2} & 0 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1_{J} & 0 & 0 & \ldots & 0 & 0 \\
0 & 1_{1} & 0 & \ldots & 0 & 0 \\
0 & 1_{2} & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 1_{J} & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1_{1} \\
0 & 0 & 0 & \ldots & 0 & 1_{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 1_{J}
\end{array}\right)
$$

is the random effects design matrix.
4. Update of $\boldsymbol{\Phi}_{1}$: We update the $n \times 1$ vector of random effects for the binary component, $\boldsymbol{\Phi}_{1}=\left(\phi_{11}, \ldots, \phi_{1 n}\right)^{T}$, conditional on the $n \times 1$ random effect vector, $\boldsymbol{\Phi}_{2}=$ $\left(\phi_{21}, \ldots, \phi_{2 n}\right)^{T}$, for the mean component. Recall that the bivariate CAR prior for the 2×1 vector of spatial effects, $\boldsymbol{\phi}_{i}=\left(\phi_{1 i}, \phi_{2 i}\right)^{T}$, for county i is

$$
\boldsymbol{\phi}_{i} \mid \boldsymbol{\phi}_{(-i)}, \boldsymbol{\Sigma}=\mathrm{N}_{2}\left(\frac{1}{m_{i}} \sum_{l \in \partial_{i}} \boldsymbol{\phi}_{l}, \frac{1}{m_{i}} \boldsymbol{\Sigma}\right),
$$

where m_{i} is the number of neighboring counties and $\boldsymbol{\Sigma}=\left[\begin{array}{cc}\sigma_{\phi_{1}}^{2} & \rho \sigma_{\phi_{1}} \sigma_{\phi_{2}} \\ \rho \sigma_{\phi_{1}} \sigma_{\phi_{2}} & \sigma_{\phi_{2}}^{2}\end{array}\right]$ is the bivariate CAR scale matrix. By Brook's lemma, the joint multivariate intrinsic CAR prior for the $2 n \times 1$ vector $\boldsymbol{\Phi}=\left(\boldsymbol{\Phi}_{1}^{T}, \boldsymbol{\Phi}_{2}^{T}\right)^{T}$ is proportional to a mean-zero, singular (i.e., rank deficient) multivariate normal density:

$$
\binom{\boldsymbol{\Phi}_{1}}{\boldsymbol{\Phi}_{2}} \propto \exp \left[-\frac{1}{2} \boldsymbol{\Phi}^{T}\left(\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Q}\right) \boldsymbol{\Phi}\right]
$$

where $\boldsymbol{Q}=\boldsymbol{M}-\boldsymbol{A}$ is the $n \times n$ intrinsic CAR structure matrix of rank $n-1 ; \boldsymbol{M}=$ $\operatorname{diag}\left(m_{1}, \ldots, m_{n}\right)$ with diagonal elements equal to the number of neighbors for each spatial unit; \boldsymbol{A} is an $n \times n$ adjacency matrix with $a_{i i}=0, a_{i l}=1$ if spatial units i and l are neighbors, and $a_{i l}=0$ otherwise. Thus, from the properties of the multivariate
(singular) normal distribution, the conditional prior for $\boldsymbol{\Phi}_{1}$ given $\boldsymbol{\Phi}_{2}$ is:

$$
\begin{aligned}
p\left(\boldsymbol{\Phi}_{1} \mid \boldsymbol{\Phi}_{2}, \boldsymbol{\Sigma}\right) & \propto \exp \left[-\frac{1}{2}\left(\boldsymbol{\Phi}_{1}-\boldsymbol{\mu}_{1 \mid 2}\right)^{T} \boldsymbol{\Sigma}_{1 \mid 2}^{-1}\left(\boldsymbol{\Phi}_{1}-\boldsymbol{\mu}_{1 \mid 2}\right)\right], \text { where } \\
\boldsymbol{\Sigma}_{1 \mid 2}^{-1} & =\left[\sigma_{\phi_{1}}^{2}\left(1-\rho^{2}\right)\right]^{-1} \boldsymbol{Q} \\
\boldsymbol{\mu}_{1 \mid 2} & =\rho \frac{\sigma_{\phi_{1}}}{\sigma_{\phi_{2}}} \boldsymbol{Q}^{+} \boldsymbol{Q} \boldsymbol{\Phi}_{2} \rightarrow \rho \frac{\sigma_{\phi_{1}}}{\sigma_{\phi_{2}}} \boldsymbol{\Phi}_{2} \text { for large } n,
\end{aligned}
$$

and \boldsymbol{Q}^{+}is the Moore-Penrose generalized inverse of the rank-deficient structure ma$\operatorname{trix} \boldsymbol{Q}$. The approximation in the last line follows from Corollary 2.3 in Neelon et al. (2023), which states that the expression $\boldsymbol{Q}^{+} \boldsymbol{Q} \rightarrow \boldsymbol{I}_{n}$ as $n \rightarrow \infty$, where \boldsymbol{I}_{n} is the n-dimensional identity matrix. Hence, the conditional prior mean of $\boldsymbol{\Phi}_{1}$ is closely approximated by $\boldsymbol{\mu}_{1 \mid 2} \approx \rho \frac{\sigma_{\phi_{1}}}{\sigma_{\phi_{2}}} \boldsymbol{\Phi}_{2}$ for moderate to large n.

From step (2) above, $\boldsymbol{z}^{*} \mid \boldsymbol{\theta}_{1}, \boldsymbol{\Phi}_{1} \sim \mathrm{~N}_{N}\left(\boldsymbol{\eta}, \boldsymbol{\Omega}^{-1}\right)$. Therefore,

$$
\begin{aligned}
p\left(\boldsymbol{\Phi}_{1} \mid \boldsymbol{z}^{*}, \boldsymbol{\theta}_{1}\right) & \propto \pi\left(\boldsymbol{z}^{*} \mid \boldsymbol{\theta}_{1}, \mathbf{\Phi}_{1}\right) \pi\left(\mathbf{\Phi}_{1} \mid \mathbf{\Phi}_{2}, \boldsymbol{\Sigma}_{1 \mid 2}\right) \\
& \propto \exp \left[\frac{-1}{2}\left(\boldsymbol{z}^{*}-\boldsymbol{L} \boldsymbol{\theta}_{1}-\boldsymbol{L}^{*} \boldsymbol{\Phi}_{1}\right)^{\mathrm{T}} \boldsymbol{\Omega}\left(\boldsymbol{z}^{*}-\boldsymbol{L} \boldsymbol{\theta}_{1}-\boldsymbol{L}^{*} \boldsymbol{\Phi}_{1}\right)\right] \\
& \times \exp \left[\frac{-1}{2}\left(\boldsymbol{\Phi}_{1}-\boldsymbol{\mu}_{1 \mid 2}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{1 \mid 2}^{-1}\left(\boldsymbol{\Phi}_{1}-\boldsymbol{\mu}_{1 \mid 2}\right)\right] \\
& \propto \exp \left\{\frac{-1}{2}\left[\boldsymbol{\Phi}_{1}^{T}\left(\boldsymbol{L}^{* T} \boldsymbol{\Omega} \boldsymbol{L}^{*}+\boldsymbol{\Sigma}_{1 \mid 2}^{-1}\right) \boldsymbol{\Phi}_{1}-2 \boldsymbol{\Phi}_{1}^{T}\left\{\boldsymbol{L}^{* T} \boldsymbol{\Omega}\left(\boldsymbol{z}^{*}-\boldsymbol{L} \boldsymbol{\theta}_{1}\right)+\boldsymbol{\Sigma}_{1 \mid 2}^{-1} \boldsymbol{\mu}_{1 \mid 2}\right\}\right]\right\} \\
& \propto \exp \left\{-\frac{1}{2}\left[\boldsymbol{\Phi}_{1}^{T} \boldsymbol{V}_{\boldsymbol{\Phi}_{1}}^{-1} \boldsymbol{\Phi}_{1}-2 \boldsymbol{\Phi}_{1}^{T} \boldsymbol{\eta}_{\boldsymbol{\Phi}_{1}}\right]\right\}
\end{aligned}
$$

Completing the square in n dimensions, we have $\boldsymbol{\Phi}_{1} \mid \boldsymbol{z}^{*}, \boldsymbol{\theta}_{1} \sim \mathrm{~N}_{n}\left(\boldsymbol{\mu}_{\boldsymbol{\Phi}_{1}}, \boldsymbol{V}_{\boldsymbol{\Phi}_{1}}\right)$ where

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{\Phi}_{1}}=\left(\boldsymbol{L}^{* T} \boldsymbol{\Omega} \boldsymbol{L}^{*}+\boldsymbol{\Sigma}_{1 \mid 2}^{-1}\right)^{-1} \\
& \boldsymbol{\mu}_{\boldsymbol{\Phi}_{1}}=\boldsymbol{V}_{\boldsymbol{\Phi}_{1}} \boldsymbol{\eta}_{\boldsymbol{\Phi}_{1}}=\boldsymbol{V}_{\boldsymbol{\Phi}_{1}}\left[\boldsymbol{\Sigma}_{1 \mid 2}^{-1} \boldsymbol{\mu}_{1 \mid 2}+\boldsymbol{L}^{* T} \boldsymbol{\Omega}\left(\boldsymbol{z}^{*}-\boldsymbol{L} \boldsymbol{\theta}_{1}\right)\right]
\end{aligned}
$$

where $\boldsymbol{\Sigma}_{1 \mid 2}^{-1}$ and $\boldsymbol{\mu}_{1 \mid 2}$ are, respectively, the conditional prior precision matrix and (the approximated) conditional prior mean for $\boldsymbol{\Phi}_{1} \mid \boldsymbol{\Phi}_{2}$ given above.
5. Update $\boldsymbol{\theta}_{2}$: To update the $(p+K) \times 1$ vector of fixed and spline effects for the overall mean part, $\boldsymbol{\theta}_{2}=\left(\boldsymbol{\beta}^{T}, \boldsymbol{\zeta}_{2}^{T}\right)^{T}$, we use a Metropolis-Hastings (MH) step with symmetric multivariate t proposal density centered at the previous value of $\boldsymbol{\theta}_{2}$ with acceptance
ratio

$$
\rho_{\boldsymbol{\theta}_{2}}=\frac{p\left(\boldsymbol{\theta}_{2}^{(p)} \mid \boldsymbol{y}^{*}, \boldsymbol{\theta}_{1}, \boldsymbol{\Phi}_{2}^{*}, r\right)}{p\left(\boldsymbol{\theta}_{2}^{(s)} \mid \boldsymbol{y}^{*}, \boldsymbol{\theta}_{1}, \boldsymbol{\Phi}_{2}^{*}, r\right)}=\frac{\prod_{i=1}^{n} \prod_{t=1}^{n_{i}^{*}} \mathrm{NB}\left(y_{i t}^{*} \mid \boldsymbol{\theta}_{2}^{(p)}, \boldsymbol{\theta}_{1}, \boldsymbol{\Phi}_{2}^{*}, r\right)}{\prod_{i=1}^{n} \prod_{t=1}^{n_{i}^{*}} \mathrm{NB}\left(y_{i t}^{*} \mid \boldsymbol{\theta}_{2}^{(s)}, \boldsymbol{\theta}_{1}, \boldsymbol{\Phi}_{2}^{*}, r\right)} \times \frac{\mathrm{N}_{p}\left(\boldsymbol{\theta}_{2}^{(p)} ; \boldsymbol{\theta}_{0}, \boldsymbol{V}_{0}\right)}{\mathrm{N}_{p}\left(\boldsymbol{\theta}_{2}^{(s)} ; \boldsymbol{\theta}_{0}, \boldsymbol{V}_{0}\right)},
$$

where $\boldsymbol{\theta}_{2}^{(p)}$ and $\boldsymbol{\theta}_{2}^{(s)}$ are the proposed and current values of $\boldsymbol{\theta}_{2}$ at iteration s, respectively; \boldsymbol{y}^{*} is a vector of $N^{*}=\sum_{i=1}^{n} n_{i}^{*} \leq N$, where $n_{i}^{*}=\sum_{t=1}^{T} z_{i t}$ is the number of at-risk observations for county i and $z_{i t}$ is the latent at-risk indicator for county i on day t defined in equation (7) of the manuscript; and $\mathrm{NB}\left(y_{i t}^{*} \mid \boldsymbol{\theta}_{2}^{(p)}, \boldsymbol{\theta}_{1}, \boldsymbol{\Phi}_{2}^{*}\right)$ and $\mathrm{N}_{p+K}\left(\boldsymbol{\theta}_{2}^{(p)} ; \boldsymbol{\theta}_{0}, \boldsymbol{V}_{0}\right)$ are the probability distribution functions for negative binomial and the $p+K$-variate normal prior distribution with mean $\boldsymbol{\theta}_{0}$ and covariance \boldsymbol{V}_{0} evaluated at $\boldsymbol{\theta}_{2}^{(p)}$.
6. Update $\phi_{2 i}$: Similar to $\boldsymbol{\theta}_{2}$, to update $\phi_{2 i}(i=1, \ldots, n)$, we use a random walk MH step with a symmetric univariate t proposal density centered at the previous $\phi_{2 i}$ and acceptance ratio

$$
\rho_{\phi_{2 i}}=\frac{p\left(\phi_{2 i}^{(p)} \mid \boldsymbol{y}^{*}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, r\right)}{p\left(\phi_{2 i}^{(s)} \mid \boldsymbol{y}^{*}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, r\right)}=\frac{\prod_{t=1}^{n_{i}^{*}} \mathrm{NB}\left(y_{i t}^{*} \mid \phi_{2 i}^{(p)}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, r\right)}{\prod_{t=1}^{n_{i}^{*}} \mathrm{NB}\left(y_{i t}^{*} \mid \phi_{2 i}^{(s)}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, r\right)} \times \frac{\pi\left(\phi_{2 i}^{(p)} \mid \phi_{1 i}\right)}{\pi\left(\phi_{2 i}^{(s)} \mid \phi_{1 i}\right)},
$$

where $\phi_{2 i}^{(p)}$ and $\phi_{2 i}^{(s)}$ are the proposed and current values of $\phi_{2 i}$ at current iteration s for the n_{i}^{*} "at-risk" observations, and $\pi\left(\phi_{2 i} \mid \phi_{1 i}\right)$ is the conditional univariate CAR prior distribution of $\phi_{2 i} \mid \phi_{1 i}$ analogous to equation (10) in the main manuscript. Note that the update for $\phi_{2 i}$ only depends on the "at-risk" observations for county i.
7. Update $\boldsymbol{\Sigma}$: Assuming an $\operatorname{IW}\left(\nu_{0}, \boldsymbol{S}_{0}\right)$ prior, we update the random effects covariance matrix, $\boldsymbol{\Sigma}$, from a conjugate IW distribution given by

$$
\boldsymbol{\Sigma} \mid \boldsymbol{\Phi} \sim \operatorname{IW}\left(\nu_{0}+n-1, \boldsymbol{S}_{0}+\boldsymbol{S}_{\boldsymbol{\Phi}^{*}}\right)
$$

where $\boldsymbol{S}_{\boldsymbol{\Phi}^{*}}=\boldsymbol{\Phi}^{* T} \boldsymbol{Q} \boldsymbol{\Phi}^{*}$ and $\boldsymbol{\Phi}^{*}=\left[\boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}\right]$ is the $n \times 2$ random effects matrix centered at its mean.
8. Update r : To update the NB dispersion parameter, r, we use a MH step with a zerotruncated normal proposal centered at the current value of r and acceptance ratio

$$
\rho_{r}=\frac{p\left(r^{(p)} \mid \boldsymbol{y}^{*}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}\right)}{p\left(r^{(s)} \mid \boldsymbol{y}^{*}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}\right)}=\frac{\mathrm{NB}\left(\boldsymbol{y}^{*} \mid r^{(p)}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}\right)}{\mathrm{NB}\left(\boldsymbol{y}^{*} \mid r^{(s)}, \boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}\right)} \times \frac{\mathrm{N}^{+}\left(r^{(s)}, r^{(p)}, \sigma_{r}\right)}{\mathrm{N}^{+}\left(r^{(p)}, r^{(s)}, \sigma_{r}\right)},
$$

where \boldsymbol{y}^{*} denotes the N^{*} total "at-risk" observations, N^{+}is the proposal density function for normal distribution truncated at zero with mean set to the current value of r
at iteration s and standard deviation σ_{r} tuned to achieve good mixing. We assume a diffuse prior with positive support for r.

Appendix C: Sensitivity Analysis with a Reduced Model for the Binary Component

Model Component	Variable	Parm	Posterior Mean (95\% CrI)
Binary	SVI	γ_{1}	$0.33(0.10,0.57)$
	\% of adult smokers	γ_{2}	$-0.45(-0.75,-0.13)$
	CVD Hospitalizations	γ_{3}	$0.17(-0.07,0.40)$
	Population density	γ_{4}	$0.10(-0.10,0.34)$
	PM $_{2.5}$	γ_{5}	$0.03(-0.12,0.17)$
	Temperature	γ_{6}	$-3.21(-3.95,-2.39)$
Mean	SVI	β_{1}	$0.08(0.00,0.15)$
	\% of adult smokers	β_{2}	$0.26(0.08,0.41)$
	No. of physicians per 100K	β_{3}	$0.04(-0.01,0.09)$
$\%$ fair or poor health	β_{4}	$-0.08(-0.23,0.08)$	
	CVD Hospitalizations	β_{5}	$-0.02(-0.07,0.04)$
	Population density	β_{6}	$-0.07(-0.14,-0.02)$
	PM 2.5	β_{7}	$0.00(-0.05,0.04)$
	Temperature	β_{8}	$-0.14(-0.20,-0.10)$
	Precipitation	β_{9}	$0.02(-0.01,0.05)$
	Dispersion	r	$1.64(1.45,1.87)$
Random Effects	$\operatorname{var}\left(\phi_{1 i}\right)$	Σ_{11}	$1.75(0.78,3.08)$
	$\operatorname{cov}\left(\phi_{1 i}, \phi_{2 i}\right)$	Σ_{12}	$0.33(0.14,0.55)$
	$\operatorname{var}\left(\phi_{2 i}\right)$	Σ_{22}	$0.21(0.15,0.30)$

Table S2: Posterior mean estimates and 95% credible intervals (CrIs) for the COVID-19 study from the spatiotemporal MZINB model with few covariates for the binary component

References

1. Polson, N. G., Scott, J. G. and Windle, J. (2013). Bayesian inference for logistic models using Pólya-Gamma latent variables. In Journal of the American Statistical Association, 108(504), 1339-1349.
2. Neelon, B. (2019). Bayesian zero-inflated negative binomial regression based on PólyaGamma mixtures. Bayesian Analysis.
3. Neelon, B., Wen, C.C., Benjamin-Neelon, S.E. (2023). A multivariate spatiotemporal model for tracking COVID-19 incidence and death rates in socially vulnerable populations. Journal of Applied Statistics, 1-24.
4. Centers for Disease Control and Prevention/ Agency for Toxic Substances and Disease Registry/ Geospatial Research, Analysis, and Services Program. CDC/ATSDR social vulnerability index 2018 database US 2018.
