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Appendix A: Social Vulnerability Index Components

Variables

Table S1: Social Vulnerability Index themes and variables. The 15 SVI variables are obtained
from the 2016-2020 American Community Survey of the U.S.

SVI Theme Variables
Socioeconomic Status Percentage below poverty
Percentage unemployed
Per capita income
Percentage with no high school diploma

Household Composition & Disability Percentage age 65 and older
Percentage age 17 or younger
Percentage age 5 years or older with a disability
Percentage of single-parent households

Minority Status & Language Percentage minority
Percentage who speaks english “less than well”

Housing Type & Transportation Percentage of multi-unit structures
Percentage of mobile homes
Percentage crowding
Percentage having no vehicle
Percentage of group quarters




Appendix B: MCMC Algorithm

1. Update the latent at-risk indicators zi1,..., 217, ..., 2n1,-- ., 2o for the binary com-
ponent. The generic form of the spatiotemporal marginalized ZINB model is similar
to the model given in equation (1) of the main manuscript. That is
Yie ~ (1 — Vi) Lz = 0 Ay = 0) + Yup(yir; 7, Vi) Ls,,=1, where z; = 1 (county i is
“at-risk” on day t ) with prior probability
Py = exp(wiy + ¢y + f1(1))/[1 + exp(wl~y + ¢1; + f1(t))] and z;; = 0 otherwise. Now,
if y;; > 0, then county ¢ is in the at-risk class on day ¢ but otherwise on the structural
class implying that y;; = 0. Thus, given y;; > 0, we set z; = 1. Conversely, if y;; = 0,
then we observe either a structural zero (implying z;; = 0) or an at-risk zero (implying
ziy = 1). In this case, we draw z; from a Bernoulli distribution with probability 6;,

where 6;; is given by

Pr(ziy = 1Nyy = 0)
Pr(y; = 0)
B Pr(y; = 0|z = 1) Pr(zy = 1)
~ Pr(yi = 0|zi = 1) Pr(2i=1) + Pr(ys = 0|z = 0) Pr(zi—0)’

it = Pr(zit|yi = 0,1e85t) =

where Pr(y; = 0|z = 1) is the probability of observing a zero under the negative
binomial model (at-risk zero) which is (1 — ¢;)", where q;x = i/ (Vie + 1) and vy is
defined in equation (7) of the main manuscript. Additionally, Pr(y;; = 0|z;; = 0) = 1,
since, in this case, county ¢ belongs to the structural class on day ¢ and hence y; = 0

with probability 1. Thus, we have

Pr(yit = O’Zit = 1) Pf(Zit = 1)
Pr(yy; = 0|z = 1) Pr(2i=1) + Pr(yit = 0]zi = 0) Pr(zi—0)
(1 = qit) it
(1 = qit) i + 1.(1 — i)
_ Vir (1 — qar)"
1 —thu[1 = (1 — gar)"]

O =

2. Update w;: From Polson et al. (2013), the conditional distribution of w; given 6,
and ¢ is p(wit|01, ¢1) < PG(1,1460, + ¢1;) where l;; is a (p + K) x 1 vector of fixed
and spline effects for the binary part. Thus, draw wy (i =1,...,n; t=1,...,T)
independently from PG(1,1%60, + ¢y;) using the accept-reject algorithm described in
Polson et al. (2013), which can be implemented using the R package BayesLogit.

3. Update 6;: Given w = (W11, ,WiTy- -, Wnls- - War)L, ®1 = (P11, .,01,)7, and



the at-risk indicators 2 = (211,..., 217 - -+, Zn1,s - - -, Zn7) -, the full conditional for 6 is

given by
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Next, we make use of the following two properties of PG density detailed in Polson et
al. (2013). First, for a € % and 1 € R, it follows that

(en)a __ o—b_krn > —wn?/2
m =2""¢ . [§ p(w|b, O)dw
where K = a — b/2 and p(w|b,0) denotes a PG(b,0) density. Second, the conditional
distribution p(wl|b, c) ~ PG(b, c) follows from an “exponential tilting” of the PG(b,0)
density:

exp(— o/ 2p(wp, 0)
. oxpl )
exp(—c*w/2)p(w|b, 0)
J5° e=e*/2p(wlb, 0)dw

p(wlb, ¢)

Applying the above properties, we get
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where from equation and property 1, ki = z; — 1/2. Continuing, we have
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where zj; = Zii = —zit;, :/ 2. Completing the square we get,
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where z* is an N X 1 vector with 7t-th element z;;, where N = nT is the total number
of observations; i is an N x 1 mean vector with i¢t-th element n;; = lZQel + 15 ;
Q = diag(w) is an N x N diagonal matrix of PG precisions. The last expression
is kernel of a Ny(m,Q7!) density. Thus, assuming a N, (6o, Vo) prior for ; and
applying standard Bayesian linear regression results, the conjugate full conditional for

0, given z*, ®;, and w is Ny (i, V') where

1

V=(V,'+L"QL)"
p=VI[V,'0,+L"Q>z" — L'®)],

and L is an N x (p+ K) design matrix for the fixed-effect covariates and B-spline basis

functions for the binary part and
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is the random effects design matrix.

. Update of ®;: We update the n x 1 vector of random effects for the binary com-
ponent, ®;, = (¢11,...,¢1,)7, conditional on the n x 1 random effect vector, ®, =
(a1, - .., Pan)T, for the mean component. Recall that the bivariate CAR prior for the
2 x 1 vector of spatial effects, ¢; = (¢, ¢2:)7, for county i is
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bivariate CAR scale matrix. By Brook’s lemma, the joint multivariate intrinsic CAR

o 04,0
where m; is the number of neighboring counties and ¥ = o POan ¢2] is the

prior for the 2n x 1 vector ® = (®7 ®1)7 is proportional to a mean-zero, singular

(i.e., rank deficient) multivariate normal density:

(i:) X exp [—%(I’T (='®Q) {)} ,

where @ = M — A is the n x n intrinsic CAR structure matrix of rank n — 1; M =
diag(my, ..., m,) with diagonal elements equal to the number of neighbors for each
spatial unit; A is an n X n adjacency matrix with a; = 0, a; = 1 if spatial units ¢ and

[ are neighbors, and a; = 0 otherwise. Thus, from the properties of the multivariate



(singular) normal distribution, the conditional prior for ®; given ®, is:

1
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X = e 0-0]Q,

M1z = p%QJrQ‘I)z — p%‘ig for large n,
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and Q" is the Moore-Penrose generalized inverse of the rank-deficient structure ma-
trix Q. The approximation in the last line follows from Corollary 2.3 in Neelon et
al. (2023), which states that the expression Q*Q — I, as n — oo, where I, is the
n-dimensional identity matrix. Hence, the conditional prior mean of ®; is closely ap-

proximated by 12 ~ p%@g for moderate to large n.
2

From step (2) above, 2*|6,, ®; ~ Ny(n,Q71). Therefore,

p((bllZ*;el) X W(Z*|01,¢’1)7T(@1|‘I’2,21|2)
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Completing the square in n dimensions, we have ®|z*,60; ~ N,,(pa,, Va,) where
-1
Va, = (LTI +3)
He, = V‘I’ln‘l’l = V@l [El_lélllug + L*TQ<Z* — L91> s

where 21_‘; and puy)o are, respectively, the conditional prior precision matrix and (the

approximated) conditional prior mean for ®;|®, given above.

. Update 6,: To update the (p+ K) x 1 vector of fixed and spline effects for the overall
mean part, Oy = (87, ¢1)T, we use a Metropolis-Hastings (MH) step with symmetric

multivariate ¢ proposal density centered at the previous value of 6y with acceptance



ratio
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where egp ) and 0&8) are the proposed and current values of 85 at iteration s, respectively;
y* is a vector of N* = 32" n* < N, where nf = Y, 2 is the number of at-risk
observations for county ¢ and z; is the latent at-risk indicator for county ¢ on day ¢ de-
fined in equation (7) of the manuscript: and NB(y%|0%”, 8, ®3) and N, x(6%; 6y, Vi)
are the probability distribution functions for negative binomial and the p + K —variate

normal prior distribution with mean 6, and covariance V; evaluated at ng ).

. Update ¢o;: Similar to 6,, to update ¢o; (i = 1,...,n), we use a random walk MH
step with a symmetric univariate ¢ proposal density centered at the previous ¢o; and

acceptance ratio

p(63y".01.02.7) _ TLEa NB(yilo. 01, 02.7) | w3 |0)
p(05)1y",01,62.7)  TLZ NB(y3 1057 01.02.7)  m(057|6n:)

P =

where ¢§€) and ¢g‘? are the proposed and current values of ¢; at current iteration s for
the n! “at-risk” observations, and 7(¢9;|¢1;) is the conditional univariate CAR prior
distribution of ¢9;|¢1; analogous to equation (10) in the main manuscript. Note that

the update for ¢9; only depends on the “at-risk” observations for county i.

. Update ¥: Assuming an IW(vp, Sy) prior, we update the random effects covariance

matrix, 3, from a conjugate IW distribution given by
S| ~IW(y+n—1,8 + Sg-),

where Sg« = ®*TQ®* and ®* = [P, 5] is the n x 2 random effects matrix centered

at its mean.

. Update r: To update the NB dispersion parameter, r, we use a MH step with a zero-

truncated normal proposal centered at the current value of » and acceptance ratio

_ P(T(p) [y*,01,0;, 1, Py) NB(y*|r(p), 01,6:, ®1, Py) N+(7"(5)7 @), )

r X ,
P p(r(s)‘y*701’02’¢)17q)2) NB(y*‘T(S)7017027¢1’¢2) N+<T(p)7r(s)aaT)

where y* denotes the N* total “at-risk” observations, N is the proposal density func-

tion for normal distribution truncated at zero with mean set to the current value of r



at iteration s and standard deviation o, tuned to achieve good mixing. We assume a

diffuse prior with positive support for r.



Appendix C: Sensitivity Analysis with a Reduced

Model for the Binary Component

Model Component Variable Parm Posterior Mean (95% CrI)
Binary SVI " 0.33 (0.10,0.57)

% of adult smokers Y2 —0.45 (—0.75,—0.13)

CVD Hospitalizations V3 0.17 (—0.07,0.40)

Population density V4 0.10 (—0.10,0.34)

Temperature Y6 —3.21 (—3.95,—2.39)

Mean SVI 8, 0.08 (0.00,0.15)

% of adult smokers B 0.26 (0.08,0.41)

No. of physicians per 100K Joa 0.04 (—0.01,0.09)

% fair or poor health B4 —0.08 (—0.23,0.08)

CVD Hospitalizations Bs —0.02 (—0.07,0.04)

Population density Be —0.07 (—0.14, —0.02)

PMa s By 0.00 (—0.05,0.04)

Temperature Jo —0.14 (—0.20, —0.10)

Precipitation Bo 0.02 (—0.01,0.05)

Dispersion r 1.64 (1.45,1.87)

Random Effects var(¢y;) Y 1.75 (0.78, 3.08)
COV(¢1¢, (bm) 212 0.33 (014, O55)

var(ca;) Tas 0.21 (0.15,0.30)

Table S2: Posterior mean estimates and 95% credible intervals (Crls) for the COVID-19 study
from the spatiotemporal MZINB model with few covariates for the binary component
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