
Web-Based Supporting Material for “A marginalized
zero-inflated negative binomial model for spatial data:

modeling COVID-19 deaths in Georgia” by Fedelis
Mutiso, Hong Li, John L. Pearce, Sara E.

Benjamin-Neelon, Noel T. Mueller, and Brian Neelon

Appendix A: Social Vulnerability Index Components

Variables

Table S1: Social Vulnerability Index themes and variables. The 15 SVI variables are obtained
from the 2016-2020 American Community Survey of the U.S.

SVI Theme Variables
Socioeconomic Status Percentage below poverty

Percentage unemployed
Per capita income
Percentage with no high school diploma

Household Composition & Disability Percentage age 65 and older
Percentage age 17 or younger
Percentage age 5 years or older with a disability
Percentage of single-parent households

Minority Status & Language Percentage minority
Percentage who speaks english “less than well”

Housing Type & Transportation Percentage of multi-unit structures
Percentage of mobile homes
Percentage crowding
Percentage having no vehicle
Percentage of group quarters
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Appendix B: MCMC Algorithm

1. Update the latent at-risk indicators z11, . . . , z1T , . . . , zn1, . . . , znT for the binary com-

ponent. The generic form of the spatiotemporal marginalized ZINB model is similar

to the model given in equation (1) of the main manuscript. That is

yit ∼ (1 − ψit)1(zit = 0 ∧ yit = 0) + ψitp(yit; r, νit)1zit=1, where zit = 1 (county i is

“at-risk” on day t ) with prior probability

ψit = exp(wT
itγ+φ1i + f1(t))/[1 + exp(wT

itγ+φ1i + f1(t))] and zit = 0 otherwise. Now,

if yit > 0, then county i is in the at-risk class on day t but otherwise on the structural

class implying that yit = 0. Thus, given yit > 0, we set zit = 1. Conversely, if yit = 0,

then we observe either a structural zero (implying zit = 0) or an at-risk zero (implying

zit = 1). In this case, we draw zit from a Bernoulli distribution with probability θit,

where θit is given by

θit = Pr(zit|yit = 0, rest) =
Pr(zit = 1 ∩ yit = 0)

Pr(yit = 0)

=
Pr(yit = 0|zit = 1) Pr(zit = 1)

Pr(yit = 0|zit = 1) Pr(zit=1) + Pr(yit = 0|zit = 0) Pr(zit=0)
,

where Pr(yit = 0|zit = 1) is the probability of observing a zero under the negative

binomial model (at-risk zero) which is (1− qit)r, where qit = rψit/(νit + rψit) and νit is

defined in equation (7) of the main manuscript. Additionally, Pr(yit = 0|zit = 0) = 1,

since, in this case, county i belongs to the structural class on day t and hence yit = 0

with probability 1. Thus, we have

θit =
Pr(yit = 0|zit = 1) Pr(zit = 1)

Pr(yit = 0|zit = 1) Pr(zit=1) + Pr(yit = 0|zit = 0) Pr(zit=0)

=
(1− qit)rψit

(1− qit)rψit + 1.(1− ψit)

=
ψit(1− qit)r

1− ψit[1− (1− qit)r]

2. Update ωit: From Polson et al. (2013), the conditional distribution of ωit given θ1

and φ1 is p(ωit|θ1,φ1)
d
= PG(1, lTitθ1 + φ1i) where lit is a (p + K) × 1 vector of fixed

and spline effects for the binary part. Thus, draw ωit (i = 1, . . . , n; t = 1, . . . , T )

independently from PG(1, lTitθ1 + φ1i) using the accept-reject algorithm described in

Polson et al. (2013), which can be implemented using the R package BayesLogit.

3. Update θ1: Given ω = (ω11, . . . , ω1T , . . . , ωn1, . . . , ωnT )T , Φ1 = (φ11, . . . , φ1n)T , and
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the at-risk indicators z = (z11, . . . , z1T , . . . , zn1, . . . , znT )T , the full conditional for θ1 is

given by

p(θ1|zit, ωit, φ1i) ∝ π(θ1)
n∏
i=1

T∏
t=1

p(zit|θ1, ωit, φ1i)p(ωit|θ1, φ1i)

∝ π(θ1)
n∏
i=1

T∏
t=1

exp(lTitθ1 + φ1i)
zit

1 + exp(lTitθ1 + φ1i)
p(ωit|θ1, φ1i) (1)

Next, we make use of the following two properties of PG density detailed in Polson et

al. (2013). First, for a ∈ R and η ∈ R, it follows that

(eη)a

(1 + eη)b
= 2−beκη

∫ ∞
0

e−ωη
2/2p(ω|b, 0)dω

where κ = a − b/2 and p(ω|b, 0) denotes a PG(b, 0) density. Second, the conditional

distribution p(ω|b, c) ∼ PG(b, c) follows from an “exponential tilting” of the PG(b, 0)

density:

p(ω|b, c) =
exp(−c2ω/2)p(ω|b, 0)

Eω[exp(−c2ω/2)]

=
exp(−c2ω/2)p(ω|b, 0)∫∞
0

e−c2ω/2p(ω|b, 0)dω

Applying the above properties, we get

p(θ1|zit, ωit, φ1i) ∝ π(θ1)
n∏
i=1

T∏
t=1

[
eκitηit

∫ ∞
0

e−ωitη
2
it/2p(ωit|1, 0)dωit

]
× e−η

2
itωit/2p(ωit|1, 0)∫∞

0
e−η

2
itωit/2p(ωit|1, 0)dωit
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where from equation (1) and property 1, κit = zit − 1/2. Continuing, we have

p(θ1|zit, ωit, φ1i) ∝ π(θ1)
n∏
i=1

T∏
t=1

eκitηite−ωitη
2
it/2p(ωit|1, 0)

∝ π(θ1)
n∏
i=1

T∏
t=1

eκitηite−ωitη
2
it/2 since p(ωit|1, 0) is constant w.r.t θ1

∝ π(θ1)
n∏
i=1

T∏
t=1

e
−ωit

2

[
η2it−2ηit

κit
ωit

]

∝ π(θ1)
n∏
i=1

T∏
t=1

e−
ωit
2 [η2it−2ηitz∗it],

where z∗it = κit
ωit

= zit−1/2
ωit

. Completing the square we get,

p(θ1|zit, ωit, φ1i) ∝ π(θ1)
n∏
i=1

T∏
t=1

e{−
ωit
2 [η2it−2ηitz∗it+z∗2it ]}

∝ π(θ1)
n∏
i=1

T∏
t=1

e

{
−ωit

2 (z∗it−ηit)
2
}

∝ π(θ1) exp

[
−1

2
(z∗ − η)TΩ(z∗ − η)

]
where z∗ is an N × 1 vector with it-th element zit, where N = nT is the total number

of observations; η is an N × 1 mean vector with it-th element ηit = lTitθ1 + φ1i ;

Ω = diag(ω) is an N × N diagonal matrix of PG precisions. The last expression

is kernel of a NN(η,Ω−1) density. Thus, assuming a Np+K(θ0,V0) prior for θ1 and

applying standard Bayesian linear regression results, the conjugate full conditional for

θ1 given z∗, Φ1, and ω is Np+K(µ,V ) where

V =
(
V −10 +LTΩL

)−1
µ = V

[
V −10 θ0 +LTΩ(z∗ −L∗Φ1)

]
,

and L is an N×(p+K) design matrix for the fixed-effect covariates and B-spline basis

functions for the binary part and
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L∗
N×n

=



11 0 0 . . . 0 0

12 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

1J 0 0 . . . 0 0

0 11 0 . . . 0 0

0 12 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 1J 0 . . . 0 0

0 0 0 . . . 0 11

0 0 0 . . . 0 12

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1J


is the random effects design matrix.

4. Update of Φ1: We update the n × 1 vector of random effects for the binary com-

ponent, Φ1 = (φ11, . . . , φ1n)T , conditional on the n × 1 random effect vector, Φ2 =

(φ21, . . . , φ2n)T , for the mean component. Recall that the bivariate CAR prior for the

2× 1 vector of spatial effects, φi = (φ1i, φ2i)
T , for county i is

φi|φ(−i),Σ = N2

(
1

mi

∑
l∈∂i

φl,
1

mi

Σ

)
,

where mi is the number of neighboring counties and Σ =

[
σ2
φ1

ρσφ1σφ2

ρσφ1σφ2 σ2
φ2

]
is the

bivariate CAR scale matrix. By Brook’s lemma, the joint multivariate intrinsic CAR

prior for the 2n × 1 vector Φ = (ΦT
1 ,Φ

T
2 )T is proportional to a mean-zero, singular

(i.e., rank deficient) multivariate normal density:(
Φ1

Φ2

)
∝ exp

[
−1

2
ΦT
(
Σ−1 ⊗Q

)
Φ

]
,

where Q = M −A is the n × n intrinsic CAR structure matrix of rank n − 1; M =

diag(m1, . . . ,mn) with diagonal elements equal to the number of neighbors for each

spatial unit; A is an n× n adjacency matrix with aii = 0, ail = 1 if spatial units i and

l are neighbors, and ail = 0 otherwise. Thus, from the properties of the multivariate
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(singular) normal distribution, the conditional prior for Φ1 given Φ2 is:

p(Φ1|Φ2,Σ) ∝ exp

[
−1

2

(
Φ1 − µ1|2

)T
Σ−11|2

(
Φ1 − µ1|2

)]
, where

Σ−11|2 =
[
σ2
φ1

(1− ρ2)
]−1

Q,

µ1|2 = ρ
σφ1
σφ2
Q+QΦ2 → ρ

σφ1
σφ2

Φ2 for large n,

and Q+ is the Moore-Penrose generalized inverse of the rank-deficient structure ma-

trix Q. The approximation in the last line follows from Corollary 2.3 in Neelon et

al. (2023), which states that the expression Q+Q → In as n → ∞, where In is the

n-dimensional identity matrix. Hence, the conditional prior mean of Φ1 is closely ap-

proximated by µ1|2 ≈ ρ
σφ1
σφ2

Φ2 for moderate to large n.

From step (2) above, z∗|θ1,Φ1 ∼ NN(η,Ω−1). Therefore,

p(Φ1|z∗,θ1) ∝ π(z∗|θ1,Φ1)π(Φ1|Φ2,Σ1|2)

∝ exp

[
−1

2
(z∗ −Lθ1 −L∗Φ1)

T Ω (z∗ −Lθ1 −L∗Φ1)

]
× exp

[
−1

2
(Φ1 − µ1|2)

TΣ−11|2(Φ1 − µ1|2)

]
∝ exp

{
−1

2

[
ΦT

1

(
L∗TΩL∗ + Σ−11|2

)
Φ1 − 2ΦT

1

{
L∗TΩ(z∗ −Lθ1) + Σ−11|2µ1|2

}]}
∝ exp

{
−1

2

[
ΦT

1V
−1
Φ1

Φ1 − 2ΦT
1 ηΦ1

]}
Completing the square in n dimensions, we have Φ1|z∗,θ1 ∼ Nn(µΦ1 ,VΦ1) where

VΦ1 =
(
L∗TΩL∗ + Σ−11|2

)−1
µΦ1 = VΦ1ηΦ1 = VΦ1

[
Σ−11|2µ1|2 +L∗TΩ(z∗ −Lθ1)

]
,

where Σ−11|2 and µ1|2 are, respectively, the conditional prior precision matrix and (the

approximated) conditional prior mean for Φ1|Φ2 given above.

5. Update θ2: To update the (p+K)× 1 vector of fixed and spline effects for the overall

mean part, θ2 = (βT , ζT2 )T , we use a Metropolis-Hastings (MH) step with symmetric

multivariate t proposal density centered at the previous value of θ2 with acceptance
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ratio

ρθ2 =
p(θ

(p)
2 |y∗,θ1,Φ∗2, r)

p(θ
(s)
2 |y∗,θ1,Φ∗2, r)

=

∏n
i=1

∏n∗
i
t=1 NB(y∗it|θ

(p)
2 ,θ1,Φ

∗
2, r)∏n

i=1

∏n∗
i
t=1 NB(y∗it|θ

(s)
2 ,θ1,Φ∗2, r)

× Np(θ
(p)
2 ;θ0,V0)

Np(θ
(s)
2 ;θ0,V0)

,

where θ
(p)
2 and θ

(s)
2 are the proposed and current values of θ2 at iteration s, respectively;

y∗ is a vector of N∗ =
∑n

i=1 n
∗
i ≤ N , where n∗i =

∑T
t=1 zit is the number of at-risk

observations for county i and zit is the latent at-risk indicator for county i on day t de-

fined in equation (7) of the manuscript; and NB(y∗it|θ
(p)
2 ,θ1,Φ

∗
2) and Np+K(θ

(p)
2 ;θ0,V0)

are the probability distribution functions for negative binomial and the p+K−variate

normal prior distribution with mean θ0 and covariance V0 evaluated at θ
(p)
2 .

6. Update φ2i: Similar to θ2, to update φ2i (i = 1, . . . , n), we use a random walk MH

step with a symmetric univariate t proposal density centered at the previous φ2i and

acceptance ratio

ρφ2i =
p(φ

(p)
2i |y∗,θ1,θ2, r)

p(φ
(s)
2i |y∗,θ1,θ2, r)

=

∏n∗
i
t=1 NB(y∗it|φ

(p)
2i ,θ1,θ2, r)∏n∗

i
t=1 NB(y∗it|φ

(s)
2i ,θ1,θ2, r)

× π(φ
(p)
2i |φ1i)

π(φ
(s)
2i |φ1i)

,

where φ
(p)
2i and φ

(s)
2i are the proposed and current values of φ2i at current iteration s for

the n∗i “at-risk” observations, and π(φ2i|φ1i) is the conditional univariate CAR prior

distribution of φ2i|φ1i analogous to equation (10) in the main manuscript. Note that

the update for φ2i only depends on the “at-risk” observations for county i.

7. Update Σ: Assuming an IW(ν0,S0) prior, we update the random effects covariance

matrix, Σ, from a conjugate IW distribution given by

Σ|Φ ∼ IW(ν0 + n− 1,S0 + SΦ∗),

where SΦ∗ = Φ∗TQΦ∗ and Φ∗ = [Φ1,Φ2] is the n× 2 random effects matrix centered

at its mean.

8. Update r: To update the NB dispersion parameter, r, we use a MH step with a zero-

truncated normal proposal centered at the current value of r and acceptance ratio

ρr =
p(r(p)|y∗,θ1,θ2,Φ1,Φ2)

p(r(s)|y∗,θ1,θ2,Φ1,Φ2)
=

NB(y∗|r(p),θ1,θ2,Φ1,Φ2)

NB(y∗|r(s),θ1,θ2,Φ1,Φ2)
× N+(r(s), r(p), σr)

N+(r(p), r(s), σr)
,

where y∗ denotes the N∗ total “at-risk” observations, N+ is the proposal density func-

tion for normal distribution truncated at zero with mean set to the current value of r
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at iteration s and standard deviation σr tuned to achieve good mixing. We assume a

diffuse prior with positive support for r.
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Appendix C: Sensitivity Analysis with a Reduced

Model for the Binary Component

Model Component Variable Parm Posterior Mean (95% CrI)
Binary SVI γ1 0.33 (0.10, 0.57)

% of adult smokers γ2 −0.45 (−0.75,−0.13)
CVD Hospitalizations γ3 0.17 (−0.07, 0.40)

Population density γ4 0.10 (−0.10, 0.34)
PM2.5 γ5 0.03 (−0.12, 0.17)

Temperature γ6 −3.21 (−3.95,−2.39)

Mean SVI β1 0.08 (0.00, 0.15)
% of adult smokers β2 0.26 (0.08, 0.41)

No. of physicians per 100K β3 0.04 (−0.01, 0.09)
% fair or poor health β4 −0.08 (−0.23, 0.08)

CVD Hospitalizations β5 −0.02 (−0.07, 0.04)
Population density β6 −0.07 (−0.14,−0.02)

PM2.5 β7 0.00 (−0.05, 0.04)
Temperature β8 −0.14 (−0.20,−0.10)
Precipitation β9 0.02 (−0.01, 0.05)

Dispersion r 1.64 (1.45, 1.87)

Random Effects var(φ1i) Σ11 1.75 (0.78, 3.08)
cov(φ1i, φ2i) Σ12 0.33 (0.14, 0.55)

var(φ2i) Σ22 0.21 (0.15, 0.30)

Table S2: Posterior mean estimates and 95% credible intervals (CrIs) for the COVID-19 study
from the spatiotemporal MZINB model with few covariates for the binary component
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