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| ntroduction

® Previously, we discussed correlated data in the context of a matched pair design

e Correlated data are common in
1. Longitudinal studies: same subject followed over time.
2. Cluster randomized trials: Treatment is assigned to groups, the members within a
group tend to be correlated responses
3. Family studies: individuals within a family are more similar (genetically and
environmentally)

e While we could have spent a semester on this topic alone, we will briefly move through
a methods-driven examination
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Motivating Data

e We will look at the “Six Cities” study of the health effects of air pollution (Ware et al.
1984).

e The data analyzed are the 16 selected cases in Lipsitz, Fitzmaurice, et al. (1994).

® The binary response is the wheezing status of 16 children at ages 9, 10, 11, and 12
years.

e The probability of wheezing at each age is to be modeled as a logistic regression
model using the explanatory variables city of residence, age, and maternal smoking
status at the particular age.
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General summary points to consider

e Data between subjects are assumed to be independent
e Data within a subject are assumed to be dependent
e The dependence is modeled as a covariance (or correlation) pattern
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Covariance Patterns

You will learn more about covariance patterns models in Multivariate Analysis, for now,
consider the following structures:

e Compound Symmetry (or exchangeable): Correlation is the same for all outcomes
within a subject (i.e., the corr(y;;,y;x)=p, V j # k and the corr(y;;,y,/,)=0, V i # z")
e Unstructured (i.e., corr(y;7,y: k)=p;i)
The compound symmetry model is a good place to begin.
® You estimate the fewest number of correlation parameters
e Compound symmetry is often used in sample size calculations

e re:example -The binary responses (there are 4 of these, one for each age) for
individual children are assumed to be equally correlated, implying an exchangeable
correlation structure.
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Generalized Estimating Equations (GEE)

e GEE is a generalized form of a GLM
e GEE differs from a GLM in that the distribution of the outcome is not completely
specified

e GEE is known as a marginal model. A marginal model is appropriate when inference
on group effects (population effects) is of interest. Group effects may include a
"treatment” effect.

® Solutions are obtained by the estimating equations (AKA as score equations), which
for exponential class variables, can be written as

<« OE(Y;|X;) [Y; — E(Y;]X5)
SO =255 { Var(Y, X)) ]

=1

The estimation of the variance-covariance matrix is more complicated, and the solutions are
obtained iteratively. For the purpose of this class, lets rely on GENMOD for the calculations.
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Notation

Before we develop our model, lets formalize some more notation.
Notation

® ;—1,..., N subjects
® 5 —=1,..,t; observations (Il like t to represent time, others may use n;)

® Y, = [yi1,Yi2,--- ,yiti], Is the ¢; x 1 vector of responses for subject 7

yi1 IS the response for subject ¢ at time 1
yi2 IS the response for subject ¢ at time 2
etc. (recall ¢; is the maximum observed time for subject i — this does not have to be the

same for all subjects)

For our example, t; =4 V1
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Covariate notation

® X;; = [xij1,%ij2,. .. ,a;ijp]' is the p x 1 covariate vector for the subject 7 at time j
o X, = [xi1,X2,... ,xiti]/ Is the ¢; X p matrix of covariates for subject ¢

® (isthe p x 1 vector of true population parameters

NOTES:
Covariates are typically static (same at all time measurements, e.g., gender, race, etc) or

time-dependent (change over time, e.qg., drug dose, smoking status, etc.)
This notation accounts for the characteristics.
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Our data

data si x;

i nput case city$ @@
do i=1 to 4;

<- -

<- - -

"tinme"

Ti me i ndepdendent covari ates

| nput age snoke wheeze @ <-- tine dependent
out put ;

end:

dat al i nes;
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Ignoring Clustering

® Here, we have 4 observations per individual

e \What happens if we assume we have 64 independent observations? (4 outcomes per
16 people)

® Here is the code:

proc gennod data=si x desc;

cl ass case city ;

nodel wheeze = city age snoke [/ dist=bin;
run;
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Selected Results

Model

Dat a Set

Di stribution
Li nk Functi on
Dependent Vari abl e

Nunber
Nunmber
Nunber
Nunber

of
of
of
of

Par anmet er

| nt er cept
city
city

age
snmoke

| nf or mat i on

WORK. SI X
Bi nom al
Logi t
wheeze

bservati ons Read 64
bservati ons Used 64 <--This is saying our N
Event s 19 Is 64 (we only have 16
Trials 64 partici pants)
Anal ysis O Paraneter Estinmates
St andar d
DF Esti mat e Error Pr > Chi Sq
1 1. 2597 2.6104 0. 6294
ki ngston 1 0.1391 0. 5527 0. 8013
port age 0 0. 0000 0. 0000 :
1 - 0. 2003 0. 2508 0. 4245
1 -0. 1284 0.4102 0. 7544
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Repeated Statement

e \We need to tell SAS that we have correlated data (or repeated observations)
® \We do this by using the repeated statement

proc gennod data=si x desc;
cl ass case city ;
nodel wheeze = city age snoke [/ dist=bin;
repeated subject=case / type=exch;

run;
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Selected Results

You get the sane

Dat a Set VWORK. SI X
Di stribution Bi nom al
Li nk Functi on Logi t
Dependent Vari abl e wheeze
Nunber of QObservati ons Read
Nunber of QObservations Used
Nunmber of Events

Nunber of Trials

nodel based’’

I nfornmati on

64
64
19
64

So...you have to go to the end of the report for the GEE summary

Lecture 27: Introduction to Correlated Binary Data — p. 13/18



Selected Results

GEE Model | nformation

Correl ation Structure
Subj ect Effect

Exchangeabl e
case (16 levels)

Nunber of Custers 16
Correl ation Matri x D nension 4
Maxi mum Cl uster Size 4
M ni mum Cl uster Size 4
Anal ysis O GEE Paraneter Estinates
Enpirical Standard Error Estimates
St andar d 95% Confi dence
Par anet er Esti mat e Error Limts
| nt er cept 1.2751 3.0561 -4.7148 7.2650
city ki ngst on 0.1223 0.6882 -1.2266 1.4713
city portage 0. 0000 0. 0000 0. 0000 0. 0000
age -0. 2036 0.2789 -0.7502 0. 3431
snoke -0. 0935 0. 3613 -0.8016 0. 6145

Z Pr > |z
0.42 0.6765
0.18 0.8589

-0.73  0.4655
-0.26  0.7957
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Comparison of Estimates

Regul ar

M_E

(64 i ndep obs)

Par anmet er Esti mat e
| nt er cept 1. 2597
city ki ngston 0.1391
city port age 0. 0000
age - 0. 2003
snoke -0. 1284

St andar d

Error

2.6104
0. 5527
0. 0000
0. 2508
0.4102

CEE
(16 clusters of 4)

St andar d

Esti mat e Error
1.2751 3. 0561

0.1223 0. 6882

0. 0000 0. 0000

-0. 2036 0.2789
- 0. 0935 0. 3613

Conclusion: Parameter estimates approximately equal; standard errors wrong under regular

MLE

However, for this example, the effect isn’t that dramatic (See Kleinbaum & Klein Ch 11 for

more dramatic example)
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Properties of GEE

® GEE estimates have desirable asymptotic properties

® [or correctly specified models and
® As the number of clusters gets large, the estimates are
1. Consistent: B\—> Bas K — oo
2. Asymptotically normal: B\ ~ normal as K — oo
e Correctly specified means the correct link and correlation have been specified
e However, GEE is robust to misspecficiation of the correlation patten

® The closer the correlation is the to true correlation, the more efficient (smaller standard
errors)
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Model Testing

® Gone are the likelihood based methods
® \We have not specified our likelihood and are using quasi-likelihood

e Recall from the GLM slides, we formulated the score equations

e With GEE, we are using “score like” equations since we have not fully specified the
likelihood (we’ve only specified the variance (based on the binomial) and the
correlation of the outcomes

e \We can compute “score like” and Wald tests
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Other forms of correlated data

Correlated data also arises in survey research

This follows a cluster sampling approach

Randomly select clusters (e.g., families) and survey family members
Need to take this clustering into account in the analysis

You can use SUDAAN, GEE or new SAS procedures (SURVEYFREQ,
SURVEYLOGISTIC, etc)
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