Lecture 26: Conditional Logistic Models for Matched Pairs

Dipankar Bandyopadhyay, Ph.D.

BMTRY 711: Analysis of Categorical Data Spring 2011
Division of Biostatistics and Epidemiology

Medical University of South Carolina

Lecture 26: Conditional Logistic Models for Matched Pairs — p. 1/49



Conditional Logistic Regression

Purpose

Eliminate unwanted nuisance parameters

2. Use with sparse data

® Suppose, we can group our covariates into J unique combinations

e and as such, we can form j (2 x 2) tables
e Think of each of the j stratum as a matched pair (or matched set if R:1 matching used)
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Conditional Logistic Regression, Matched Pairs

Question: When would you have small strata sample sizes y;4 4 ?

Answer: Matched pairs study

Matched pairs studies have become increasingly popular in biostatistics and
epidemiology.
For example, in a matched case-control study, you select a case, and then try to match

a control to the case, you may match on variables like age, sex, race, etc. The case
and control make up a 'strata’.

Alternatively, unlike the matched case-control, you could match individuals by age,
sex, race, etc., and then give them two different treatments, and see if the patients
respond or don’t respond to treatment; this would be a matched prospective study.

Going one-step further, you can do a cross-over trial, in which you give the same
patient two different drugs, and see if the patient responds or doesn’t respond to the
treatment; here the strata consists of the two binary measurements on the same
subject.

In general, matching yields more precision than an unmatched study, but matching can
be complicated (See Klienbaum & Klien Chp 8)
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In these matched studies, besides treatment (or exposure), there may be other
covariates of interest as well.

These ‘other’ covariates of interest cannot be matching variables, or their effects will
drop out of the conditional likelihood.

In these matched studies, the stratum sample sizes are y,; 1+ = 2.

Which is small
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Example

e \WVith data like this, you have j = 1, ..., J strata (2 x 2) tables with one subject on each

treatment, or, equivalently, one case and one control. The total sample size for each
table is Yj4+ = 2.

® [or ease of notation and exposition, we will consider a prospective matched pairs
study, although since we will be conditioning on both margins of the (2 x 2), the
methods can be used for prospective or case-control studies.

e In a clinical trial (prospective study), you match two patients in the same hospital on
age, sex, race, etc., and give one patient treatment 1 and the other patient treatment 2.
The bernoulli outcome could be the recurrence of cancer. The resulting data look like
that on the following page.
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Again, the jt* (2 x 2) table (j*" Strata) of cell counts looks like:
TABLE ;5 (or stratum ‘5’)

Variable (Y)
1 2
. Y1 Y12 Y14 =1
Variable (X)
2
Y01 Yoo Yjor =1
Yjt1 Yjt2 Vi =2
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However, the following are the only unique combinations of data possible

Y Y
Success Failure Success Failure
New 1 0) New 0) 1
X
Placebo 1 0 Placebo 0 1
Y Y
Success Failure Success Failure
New 1 0) New 0) 1
X
Placebo 0 1 Placebo 1 0
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e Each matched pair form a strata, and, you can never have more than 2 subjects in a
stratum.

® [or this prospective study, the rows in stratum 5 are independent Bernoulli random
variables (Binomial with sample size 1), with the subject on the new treatment (row 1),

Y11 ~ Bern(p;1)

where

|Ogit(pj1) = aj + 1]

and «; is the effect of the jth stratum (the matching variables), and the subject on
placebo (row 2) has

Yj21 ~ Bern(pj2)

where
|Ogit(pj2) =
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® Note, if this was a matched case-control study, then the we can still use the above
(prospective study) model, in which we rewrite the logits as

logit(pj1) = o + B,
and
logit(pj2) = aj

Here, the intercept a;‘f IS not the true o;. However, in our minds, these intercepts, a;f,

are nuisance parameters that we do not want to estimate, anyway. Also, g is still the
log-odds ratio of interest.
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e Now, using conditional likelihood theory we know that, if we further condition on the
columns (so that we have a (2 x 2) table with both margins fixed), the conditional
likelihood is only a function of the odds ratio for the (2 x 2) table.

e For this (2 x 2) table, the log-odds ratio is

logit(p;1) — logit(pj2) =
[a; + 6] —a; =8

® Thus, we can form a conditional likelihood, eliminating the unwanted nuisance
parameters «;, (or a;f) by conditioning on both margins.
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Conditional Likelihood for Matched Pairs

e Now, we will show that, for a matched pairs study, the conditional likelihood has a
particularly simple form.

® \We can even use unconditional logistic regression to estimate the parameters.

e With both margins fixed, we only need to consider one random variable in the (2 x 2)

table, and, again, we will consider
Y11
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e Since, the rows Y14 = Y24 = 1 are fixed by design (one patient on each treatment),
the possible table configurations are

Y Y
Success Failure Success Failure
New 1 0) New 0) 1
X
Placebo 1 0 Placebo 0 1
2 0 0 2
Y Y
Success Failure Success Failure
New 1 0) New 0) 1
X
Placebo 0 1 Placebo 1 0
1 1 1 1
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e Now, we condition on both margins, although, given both row totals equal 1, we only
need to condition on the first column total Y 1, since the second column total equals

2= Yj41.
e The conditional likelihood is made up of the products over strata of

PlYj11 = yj11|Yj+1]

(For ease of notation, we have dropped y;14+ and y;24 since they are fixed by design).

e \We know that there are only four possible tables for each stratum.
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e First, let’'s consider the situation when either the patient on treatment 1 or the patient or
treatment 2 succeeds, but not both, i.e., the first column total Y; 1 = 1.

e Then, we could see either of the following (2 x 2) tables

TRT SUCC FAIL
NEW 1 0 1
PLAC 0 1 1
1 1 2
TRT SUCC FAIL
NEW 0 1 1
PLAC 1 0 1
1 1 2
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Now, given both margins are (1, 1), Y;11 can take on 2 possible values, O or 1.

Suppose we let
T = Plyji1 = 1|Yj11 = 1]

Now, the definition of a bernoulli variable is one that can only take on values 0 or 1, so
{Yj11|y;+1 = 1} is Bernoulli with probability distribution

Yil1 (1 _ 7T>1_yj11

Then, we need to determine .
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The non-central hypergeometric

e Using the non-central hypergeometric,

™= PlY;11 =y;nlYj41 =1] =
( Yj+1 )( Yit+ — Yj+1 >(0Rj)yj11
Yj11 Yj1+ — Y511 .
£ Yj1+ — £
1 1 (Blyj11)
Yj11 1 —wyj11
1 1 e(B)L
14 1—4
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® Then, the probability Y;11 = 11s

7= PlYj11 = 1|Yj11 = 1]

GG
(3 )( 1-0 >e<6>0+( ; )( o )M o
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Then
eB

m= P =Y =1l= 1773

or, equivalently, the log-odds ratio () of interest actually equals the logit of the
conditional probability:

logit(7) = logit{ P[Y;11 = 1|Y;41 = 1]} =0

Then, the distribution of

€]
(4
{Yj11Yj41 = 1} ~ Bern (1 +€B) :

which, again is not a function of «;,

Then, the contribution to the conditional likelihood from this stratum is

B\ Yill 1 (1-yj11)
Lj(ﬁ):<1+eﬁ> <1+eﬁ>
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® Next, consider the case when both the treatment and placebo subjects have a
successful response, Y; 1 = 2,

TRT SUCC FAIL

NEW 1 0 1

PLAC 1 0 1
2 0 2

e \We see that the conditional probability
Plyjin = 0]Yj41 =2 =0,

Plyjin = 1|Yj41 =2] =1,
and

Plyjin = 2|Yj41 = 2] = 0,

® This conditional distribution is said to be degenerate, all the probability is located at
Y;11 = 1. Also, this conditional distribution is not a function of the parameter of interest

3.
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e Next, consider the case when both the treatment and placebo subjects fail, Y; 11 = 0,
TRT SUCC FAIL

NEW 0 1 1
PLAC 0 1 1
0 2 2

e \We see that the conditional probability
Plyji1 = 0[Y;41 =0] =1,

Plyji1 = 1|Yj41 = 0] = 0,
and

Plyjin = 2|Yj41 = 0] =0,

e This conditional distribution is also degenerate, all the probability is located at
Y;11 = 0. Also, this conditional distribution is not a function of the parameter of interest

3.
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® Then, only strata with 1 in each margin contribute any information about 5 when
conditioning on both margins:

TRT SUCC FAIL
NEW 1 0 1
PLAC 0 1 1
1 1 2
TRT SUCC FAIL
NEW 0 1 1
PLAC 1 0 1
1 1 2
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e If this was a matched case-control study, we still have that only tables with one in each
margin contribute, ( only the tables with one subject exposed, and one not exposed),
contribute to the conditional likelihood,

Case Control
Exposed 1 0 1
Not Exposed 0 1 1
1 1
Case Control
Exposed 0 1 1
Not Exposed 1 0 1
1 1

e Pairs like these are sometimes called ‘discordant pairs’.
e Note, in these discordant pairs, there is a 1 in every margin:

Yit1 =Yj42=1 and  Yji4 =Yjor =1,
e Alternatively, we can also write the discordant pairs as the pairs with

Y11 # Yjo1.
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Conditional Likelihood

® In other words, for a prospective or case-control study, the conditional likelihood can be
reduced to a product over strata with 1 in every margin (Y;4+1 = 1and Y;14 = 1), or,
equivalently. strata with Y11 # Yjo;1.

Le(B) = Hj:Yj1+:Yj+1:1 L;(B)
_ eB \Yji11 1 1—yj11
— HJ=Yj1+=Yj+1=1 (1+eﬁ> (1+e5>

. 6’3 n1o 1 noi1
o 1—|—€/B 1—|—e/3
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® Where
n10

is the number of matched pairs with the following (2 x 2) table (case exposed, control
unexposed) or (new treatment successful, old treatment fail)

D not D
E 1 0
not E 0 1

e Note that the subscript 10, in n1¢ is a pneumonic for the first row of the table
containing a 1 in the first cell (a success) and a 0 in the second cell (a failure)
e And
no1

is the number of matched pairs with the following (2 x 2) table (case unexposed,
control exposed), (new treatment fails, old treatment succeeds) :

D not D
E 0 1
not E 1 0
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The Conditional Maximum likelihood estimator (CMLE)

e The conditional likelihood is proportional to a binomial likelihood with sample size

n* = nig + no1.

66 nio 1 n*—nlo . o
— 710 (] — —7n10
<1+€5> <1+e5> me =) ’

e
14 eb

where

™= Plyjunn =1{Y;41 =1] =

® Applying the results maximum likelihood results for a single binomial sample with
success probability 7, and n1¢ success out of n* = nig + no1 trials, the CMLE of 7 is

~ _ Mo _ n10
n* n10 + no1
® Since
e
™ =Py =1V =1 =177,

as in logistic regression,
B = logit()
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e The CMLE of the log-odds ratio 5 = logit(r) is

B = logit(7)

® Then, the CMLE of the OR is

—— ¢ ni1o
ORcyvmLE = B = 10
noi1

e Now, you can show that the Mantel-Haenszel estimate of the common odds ratio also
equals
— = n10
ORyu = ORcMmMLE = —
no1
® Thus, as we discussed before, the Mantel-Haenzsel estimator works well when the
strata sizes are small.
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Test forg = 0

® Since

€]
(&
{Yj11|Yj4+1 = 1} ~ Bern (1 +€B) :

and the sum of independent Bernoullis is Binomial, we have that n1g9 given
(n10 + mo1) is binomial:

G
. (&
nio = > Yj11 ~ Bin |:(n10 + no1), }
. 1+ eP
I Yj+1=Y514=1

® |n particular, we have a binomial sample of size (n19 + n¢1) with n19 successes, and
success probability
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Conditional Confidence Interval for OR

® A 95% confidence interval for 8 = log(OR) is

B+ 1.961/Var|B]

® However, since

3 = logit(7) = log (@)

no1

the confidence interval can be equivalently written as

logit(7) + 1.96\/ Var[logit(7)]
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e Using the fact that, logit(7) can be formed by using the logit for a single binomial
sample, in large samples, for the binomial, the variance estimate of the logit is

—— o 1 1
Var(logit(w)) = — + >

e Then, a large sample 95% confidence interval for 3 = log(OR) is

o 1 1
logit(7) + 1.96\/ +
nio  no1

and we can exponentiate the endpoints to get a large sample confidence interval for

the odds ratio:
R 1 1
exp [|Oglt(71') + 1.96\/ + ]

nio no1

Lecture 26: Conditional Logistic Models for Matched Pairs — p. 31/49



Testing

® Suppose you want to test
Hp : 8 =1log(OR) =0

e This is equivalent to testing

e \We can base the test statistic for this null on the distribution of n1g.

_ nig — E(nlolHO : 8 = O)
V' Var(nio|Ho : B =0)

~ N(0,1)

e Under the null,
nio ~ Bin[(n10 + no1), .5
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e In particular, under the null

or equivalently,

and

Hy : 8

e

Hp :m™=
07 14+ eb

E(n1o|Ho : 8 =0)

Var(nig|Ho: B=0) =

1+ €0

(n10 + no1).5

(n10 + no1).5(1 — .5)

(n10 + no1).25
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e Putting these in Z, we get

7 — nio—E(n1o0lni10+n01)
VVar(nig|lnio+no1)

. mnig—(ni1o+n01).5
V(n10+n01).25

.5[n10—n01]

5¢/(n10+mn01)
_ [R10—m01]
Vv (n10+n01)
or
72 _ [n10 — n01]2 2
—_ 1
nio + noi

which has popularly been come to known as McNemar’s Statistic for matched pairs.
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e For matched pairs, if we treat each pair as a strata, and use the Mantel-Haenzsel test
for conditional independence between Exposure and Disease given strata, we also get

McNemar’s test:

[n10 — no1]?

ni1o0 + No1

72 =
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(2 x 2) table for matched pairs

e Often you will see matched pair data summarized in a (2 x 2) table as follows:
Matched Case-Control study

CASE
UNEXPOSED EXPOSED
UNEXPOSED nii n1o ni+
CONTROL
EXPOSED noi noo no+
total ni1 n4o n
Matched Pairs Clinical Trial
NEW TREATMENT
FAILURE SUCCESS
FAILURE nii n1io n1+
PLACEBO
SUCCESS noi noo no+

total n41 n40 n
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® Then, the estimated odds ratio is obtained as the ratio of the off diagonal elements:

=5 nio
OR = —.
no1

and McNemar’s chi-square (=Mantel-Haenszel ), is

2
2 _ [no —not]” 2
nio + No1

e Exact p—value can be obtained by using one sample binomial test for
H, : 3=0(H, : # = .5) when there are n1g successes in nig + ng1 trials.
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Above Example using SAS Proc Freq

trt out @@

| nput pair
/= out
[+ trt

data pair;

O=F =/

:S’

1
1

w, O0=Pl ac =/

cards:

111100210200311300
411400511501611600
/711700810800911900

101 11000111011 011211

12 00131013 0114111400

15111500161 116 011710

170118111801 19111901

201 02001211021 012210

22 00231023 0124112401

25112501261026012711

27 012811280029 102901

30113001
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proc freaq;

table pair+trtxout / cnh;
run;

[+ Proc Freq Qutput =/

SUMMARY STATI STI CS FOR TRT BY OUT
CONTRCLLI NG FOR PAI R

Cochran- Mant el - Haenszel Statistics (Based on Tabl e Scores)

Statistic Al ternative Hypothesis DF Val ue Prob
1 Nonzero Correl ati on 1 0.474 0.491
2 Row Mean Scores D ffer 1 0.474 0.491
3 General Associ ation 1 0.474 0. 491

Esti mates of the Commobn Rel ative Ri sk (Rowl/ Row2)

95%
Type of Study Met hod Val ue Confidence Limts
Case- Cont r ol Mant el - Haenszel 1. 375 0. 5531 3.4184
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With a little data reformatting (to be seen later), we have

tabl e_

pattern Frequency Per cent
0+0 3 10. 00
Ox1 8 26. 67
1+0 11 36. 67
1x1 8 26. 67

Cunmul ati ve Cunmul ati ve
Frequency Per cent
3 10. 00
11 36. 67
22 73. 33
30 100. 00

Where “0*0” represents 3 matched pairs had no successes (i.e., treatment = failure

and placebo = failure)

(refer back to slides 6 & 7, pairs 2, 8 and 22)

Note that the CMLE is

nio

(/)ECMLE = — = g = 1.375

no1
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Using Proc Logistic for Conditional Logistic Regression

proc | ogistic descendi ng;

cl ass pair;
nodel out = pair trt ;
exact trt / estimate = both /*both = |logor & or =*/;
run;

[+ Conditional Logistic Regression Qutput =*/
Exact Conditional Analysis

Condi ti onal Exact Tests

--- p-Value ---

Ef f ect Test Statistic Exact Md
trt Scor e 0.4737 0.6476 0. 5755
Probability 0. 1442 0.6476 0. 5755
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Exact Paraneter Esti nates

95% Confi dence
Par anet er Esti mat e Limts p- Val ue

trt 0. 3185 - 0. 6857 1.3706 0. 6476

Exact (Odds Rati os

95% Conf i dence
Par anet er Estimate Limts p- Val ue

trt 1.375 0. 504 3. 938 0. 6476
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Transforming data in SAS for McNemar’s

data trt(drop=trt);
set pair;

where trt=1;
renanme out=trtout;
run;

data pl ac(drop=trt);

set pair;
where trt=0;

renane out :pl acout ;

run,

dat a new,
nerge trt plac;
by pair;

proc print noobs;
run;
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[ = DATASET NEW =/
PAlI R TRTOUT PLACOUT

1 1 0
2 0 0
3 1 0
4 1 0
5 1 1
6 1 0
7 1 0
8 0 0
9 1 0
10 1 0
11 0 1
12 1 0
29 0 1
30 1 1
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McNemar’'s

We will use Proc Freq to get the data for McNemar’ Stat,

proc freq order=freq;
tabl e trtout*placout/agree;

run;
TRTOUT PLACOUT
Col Pct | 1] 0] Tot al
--------- TR L J
1 | 8 | 11 | 19
| 26.67 | 36.67 | 63.33
| 42.11 | 57.89 |
| 50.00 | 78.57 |
--------- e
0 | 8 | 3 | 11
| 26.67 | 10.00 | 36.67
| 72.73 | 27.27 |
| 50.00 | 21.43 |
--------- e
Tot al 16 14 30
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Statistics for Tabl e of

McNemar’ s Test
Statistic (S 0.4737
DF 1
Pr > S 0. 4913

trtout by placout

® Then, the estimated odds ratio is obtained as the ratio of the off diagonal elements:

—= nio

11

no1

and McNemar’s chi-square (=Mantel-Haenszel = Conditional Score Stat), is

ZQ

_ [nlo —n01]2 _ (11 —8)2

ni10 + No1

1148

= 0.4737
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Exactp—values

® Proc Logistic using the EXACT option calculated the exact p—value
® Proc Freq calculated the large sample approximation

e |If you would like to calculate the exact binomial probabilities, you can refer back to
lectures 02 or 25
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dat a pval ues;

i nput outconme $ count;
p_largesanple = 1 - probchi (0.4737,1);
car ds;
lsucc 11
2fail 8
run;
proc print data=pval ues;
var p_| argesanpl e;
run;
proc freq data=pval ues;

t abl es outcone / binom al;
wei ght count;

exact binom al;
run;
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bs p_| argesanpl e

1 0. 49129

2 0.49129 <- prints twce due to 2 data |ines

The FREQ Procedure

Bi nom al Proportion
for outconme = 1lsucc

Test of HO: Proportion

ASE under HO

Z

One-sided Pr > Z
Two-sided Pr > | Z]

Exact Test
One-sided Pr >= P
Two-sided = 2 = One-si ded

Sanple Size = 19

0.5

o O oo

o O

. 1147
. 6882
. 2456
. 4913

. 3238
. 6476
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