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Conditional Logistic Regression

Purpose

1. Eliminate unwanted nuisance parameters

2. Use with sparse data

• Suppose, we can group our covariates into J unique combinations

• and as such, we can form j (2 × 2) tables

• Think of each of the j stratum as a matched pair (or matched set if R:1 matching used)
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Conditional Logistic Regression, Matched Pairs

Question: When would you have small strata sample sizes yj++ ?

Answer: Matched pairs study

• Matched pairs studies have become increasingly popular in biostatistics and
epidemiology.

• For example, in a matched case-control study, you select a case, and then try to match
a control to the case, you may match on variables like age, sex, race, etc. The case
and control make up a ’strata’.

• Alternatively, unlike the matched case-control, you could match individuals by age,
sex, race, etc., and then give them two different treatments, and see if the patients
respond or don’t respond to treatment; this would be a matched prospective study.

• Going one-step further, you can do a cross-over trial, in which you give the same
patient two different drugs, and see if the patient responds or doesn’t respond to the
treatment; here the strata consists of the two binary measurements on the same
subject.

• In general, matching yields more precision than an unmatched study, but matching can
be complicated (See Klienbaum & Klien Chp 8)
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• In these matched studies, besides treatment (or exposure), there may be other
covariates of interest as well.

• These ‘other’ covariates of interest cannot be matching variables, or their effects will
drop out of the conditional likelihood.

• In these matched studies, the stratum sample sizes are yj++ = 2.

• Which is small
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Example

• With data like this, you have j = 1, ..., J strata (2 × 2) tables with one subject on each
treatment, or, equivalently, one case and one control. The total sample size for each
table is yj++ = 2.

• For ease of notation and exposition, we will consider a prospective matched pairs
study, although since we will be conditioning on both margins of the (2 × 2), the
methods can be used for prospective or case-control studies.

• In a clinical trial (prospective study), you match two patients in the same hospital on
age, sex, race, etc., and give one patient treatment 1 and the other patient treatment 2.
The bernoulli outcome could be the recurrence of cancer. The resulting data look like
that on the following page.
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OUTCOME OUTCOME
Pair TRT SUCC FAIL Pair TRT SUCC FAIL
---- ------- ------ ------ ---- ------- ------ ------

1 NEW 1 0 16 NEW 1 0
PLAC 0 1 PLAC 1 0

2 NEW 0 1 17 NEW 0 1
PLAC 0 1 PLAC 1 0

3 NEW 1 0 18 NEW 1 0
PLAC 0 1 PLAC 1 0

4 NEW 1 0 19 NEW 1 0
PLAC 0 1 PLAC 1 0

5 NEW 1 0 20 NEW 0 1
PLAC 1 0 PLAC 1 0

6 NEW 1 0 21 NEW 0 1
PLAC 0 1 PLAC 1 0

7 NEW 1 0 22 NEW 0 1
PLAC 0 1 PLAC 0 1
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8 NEW 0 1 23 NEW 0 1
PLAC 0 1 PLAC 1 0

9 NEW 1 0 24 NEW 1 0
PLAC 0 1 PLAC 1 0

10 NEW 1 0 25 NEW 1 0
PLAC 0 1 PLAC 1 0

11 NEW 0 1 26 NEW 0 1
PLAC 1 0 PLAC 1 0

12 NEW 1 0 27 NEW 1 0
PLAC 0 1 PLAC 1 0

13 NEW 0 1 28 NEW 1 0
PLAC 1 0 PLAC 0 1

14 NEW 1 0 29 NEW 0 1
PLAC 0 1 PLAC 1 0

15 NEW 1 0 30 NEW 1 0
PLAC 0 1 PLAC 1 0
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Again, the jth (2 × 2) table (jth Strata) of cell counts looks like:

TABLE j (or stratum ‘j’)

Variable (Y )

1 2

1
Variable (X)

2

Yj11 Yj12 Yj1+ = 1

Yj21 Yj22 Yj2+ = 1

Yj+1 Yj+2 Yj++ = 2
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However, the following are the only unique combinations of data possible

Y

Success Failure
New 1 0 1

X

Placebo 1 0 1

Y

Success Failure
New 0 1 1

X

Placebo 0 1 1

Y

Success Failure
New 1 0 1

X

Placebo 0 1 1

Y

Success Failure
New 0 1 1

X

Placebo 1 0 1
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• Each matched pair form a strata, and, you can never have more than 2 subjects in a
stratum.

• For this prospective study, the rows in stratum j are independent Bernoulli random
variables (Binomial with sample size 1), with the subject on the new treatment (row 1),

Yj11 ∼ Bern(pj1)

where

logit(pj1) = αj + β

and αj is the effect of the jth stratum (the matching variables), and the subject on
placebo (row 2) has

Yj21 ∼ Bern(pj2)

where
logit(pj2) = αj
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• Note, if this was a matched case-control study, then the we can still use the above
(prospective study) model, in which we rewrite the logits as

logit(pj1) = α∗
j + β,

and
logit(pj2) = α∗

j

Here, the intercept α∗
j is not the true αj . However, in our minds, these intercepts, α∗

j ,

are nuisance parameters that we do not want to estimate, anyway. Also, β is still the
log-odds ratio of interest.
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• Now, using conditional likelihood theory we know that, if we further condition on the
columns (so that we have a (2 × 2) table with both margins fixed), the conditional
likelihood is only a function of the odds ratio for the (2 × 2) table.

• For this (2 × 2) table, the log-odds ratio is

logit(pj1) − logit(pj2) =

[αj + β] − αj = β

• Thus, we can form a conditional likelihood, eliminating the unwanted nuisance
parameters αj , (or α∗

j ) by conditioning on both margins.

Lecture 26: Conditional Logistic Models for Matched Pairs – p. 12/49



Conditional Likelihood for Matched Pairs

• Now, we will show that, for a matched pairs study, the conditional likelihood has a
particularly simple form.

• We can even use unconditional logistic regression to estimate the parameters.

• With both margins fixed, we only need to consider one random variable in the (2 × 2)

table, and, again, we will consider
Yj11
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• Since, the rows Yj1+ = Yj2+ = 1 are fixed by design (one patient on each treatment),
the possible table configurations are

Y

Success Failure
New 1 0 1

X

Placebo 1 0 1

2 0 2

Y

Success Failure
New 0 1 1

X

Placebo 0 1 1

0 2 2

Y

Success Failure
New 1 0 1

X

Placebo 0 1 1

1 1 2

Y

Success Failure
New 0 1 1

X

Placebo 1 0 1

1 1 2
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• Now, we condition on both margins, although, given both row totals equal 1, we only
need to condition on the first column total Yj+1, since the second column total equals
2 − Yj+1.

• The conditional likelihood is made up of the products over strata of

P [Yj11 = yj11|Yj+1]

(For ease of notation, we have dropped yj1+ and yj2+ since they are fixed by design).

• We know that there are only four possible tables for each stratum.
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• First, let’s consider the situation when either the patient on treatment 1 or the patient or
treatment 2 succeeds, but not both, i.e., the first column total Yj+1 = 1.

• Then, we could see either of the following (2 × 2) tables

TRT SUCC FAIL
------- ------ ----
NEW 1 0 1
PLAC 0 1 1

1 1 2

TRT SUCC FAIL
------- ------ ----
NEW 0 1 1
PLAC 1 0 1

1 1 2

Lecture 26: Conditional Logistic Models for Matched Pairs – p. 16/49



• Now, given both margins are (1, 1), Yj11 can take on 2 possible values, 0 or 1.

• Suppose we let
π = P [yj11 = 1|Yj+1 = 1]

• Now, the definition of a bernoulli variable is one that can only take on values 0 or 1, so
{Yj11|yj+1 = 1} is Bernoulli with probability distribution

πyj11 (1 − π)1−yj11

• Then, we need to determine π.
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The non-central hypergeometric

• Using the non-central hypergeometric,

π = P [Yj11 = yj11|Yj+1 = 1] =

0
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• Then, the probability Yj11 = 1 is

π = P [Yj11 = 1|Yj+1 = 1] =

0
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• Then

π = P [Yj11 = 1|Yj+1 = 1] =
eβ

1 + eβ

or, equivalently, the log-odds ratio (β) of interest actually equals the logit of the
conditional probability:

logit(π) = logit{P [Yj11 = 1|Yj+1 = 1]} = β

• Then, the distribution of

{Yj11|Yj+1 = 1} ∼ Bern

„
eβ

1 + eβ

«
,

which, again is not a function of αj ,

• Then, the contribution to the conditional likelihood from this stratum is

Lj(β) =

„
eβ

1 + eβ

«yj11 „
1

1 + eβ

«(1−yj11)
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• Next, consider the case when both the treatment and placebo subjects have a
successful response, Yj+1 = 2,

TRT SUCC FAIL
------- ------ ----
NEW 1 0 1
PLAC 1 0 1

2 0 2

• We see that the conditional probability

P [yj11 = 0|Yj+1 = 2] = 0,

P [yj11 = 1|Yj+1 = 2] = 1,

and
P [yj11 = 2|Yj+1 = 2] = 0,

• This conditional distribution is said to be degenerate, all the probability is located at
Yj11 = 1. Also, this conditional distribution is not a function of the parameter of interest
β.
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• Next, consider the case when both the treatment and placebo subjects fail, Yj+1 = 0,

TRT SUCC FAIL
------- ------ ----
NEW 0 1 1
PLAC 0 1 1

0 2 2

• We see that the conditional probability

P [yj11 = 0|Yj+1 = 0] = 1,

P [yj11 = 1|Yj+1 = 0] = 0,

and
P [yj11 = 2|Yj+1 = 0] = 0,

• This conditional distribution is also degenerate, all the probability is located at
Yj11 = 0. Also, this conditional distribution is not a function of the parameter of interest
β.
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• Then, only strata with 1 in each margin contribute any information about β when
conditioning on both margins:

TRT SUCC FAIL
------- ------ ----
NEW 1 0 1
PLAC 0 1 1

1 1 2

TRT SUCC FAIL
------- ------ ----
NEW 0 1 1
PLAC 1 0 1

1 1 2
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• If this was a matched case-control study, we still have that only tables with one in each
margin contribute, ( only the tables with one subject exposed, and one not exposed),
contribute to the conditional likelihood,

Case Control
Exposed 1 0 1

Not Exposed 0 1 1
1 1

Case Control
Exposed 0 1 1

Not Exposed 1 0 1
1 1

• Pairs like these are sometimes called ‘discordant pairs’.

• Note, in these discordant pairs, there is a 1 in every margin:

Yj+1 = Yj+2 = 1 and Yj1+ = Yj2+ = 1,

• Alternatively, we can also write the discordant pairs as the pairs with

Yj11 6= Yj21.
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Conditional Likelihood

• In other words, for a prospective or case-control study, the conditional likelihood can be
reduced to a product over strata with 1 in every margin (Yj+1 = 1 and Yj1+ = 1), or,
equivalently. strata with Yj11 6= Yj21.

Lc(β) =
Q

j:Yj1+=Yj+1=1 Lj(β)

=
Q

j:Yj1+=Yj+1=1

“
eβ

1+eβ

”yj11
“

1
1+eβ

”1−yj11

=
“

eβ

1+eβ

”n10
“

1
1+eβ

”n01
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• Where
n10

is the number of matched pairs with the following (2 × 2) table (case exposed, control
unexposed) or (new treatment successful, old treatment fail)

D not D
E 1 0

not E 0 1

• Note that the subscript 10, in n10 is a pneumonic for the first row of the table
containing a 1 in the first cell (a success) and a 0 in the second cell (a failure)

• And
n01

is the number of matched pairs with the following (2 × 2) table (case unexposed,
control exposed), (new treatment fails, old treatment succeeds) :

D not D
E 0 1

not E 1 0
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The Conditional Maximum likelihood estimator (CMLE)

• The conditional likelihood is proportional to a binomial likelihood with sample size
n∗ = n10 + n01.

„
eβ

1 + eβ

«n10 „
1

1 + eβ

«n∗−n10

= πn10(1 − π)n∗−n10 ,

where

π = P [yj11 = 1|Yj+1 = 1] =
eβ

1 + eβ

• Applying the results maximum likelihood results for a single binomial sample with
success probability π, and n10 success out of n∗ = n10 + n01 trials, the CMLE of π is

bπ =
n10

n∗
=

n10

n10 + n01

• Since

π = P [yj11 = 1|Yj+1 = 1] =
eβ

1 + eβ
,

as in logistic regression,
β = logit(π)
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• The CMLE of the log-odds ratio β = logit(π) is

β̂ = logit(bπ)

= log
“

n10
n∗−n10

”

= log
“

n10
n01

”

• Then, the CMLE of the OR is

dORCMLE = eβ̂ =
n10

n01

• Now, you can show that the Mantel-Haenszel estimate of the common odds ratio also
equals

dORMH = dORCMLE =
n10

n01

• Thus, as we discussed before, the Mantel-Haenzsel estimator works well when the
strata sizes are small.
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Test forβ = 0

• Since

{Yj11|Yj+1 = 1} ∼ Bern

„
eβ

1 + eβ

«
,

and the sum of independent Bernoullis is Binomial, we have that n10 given
(n10 + n01) is binomial:

n10 =
X

j:Yj+1=Yj1+=1

Yj11 ∼ Bin

»
(n10 + n01),

eβ

1 + eβ

–

• In particular, we have a binomial sample of size (n10 + n01) with n10 successes, and
success probability

π =
eβ

1 + eβ

Lecture 26: Conditional Logistic Models for Matched Pairs – p. 29/49



Conditional Confidence Interval for OR

• A 95% confidence interval for β = log(OR) is

β̂ ± 1.96

q
dV ar[β̂]

• However, since

β̂ = logit(bπ) = log

„
n10

n01

«

the confidence interval can be equivalently written as

logit(bπ) ± 1.96

q
dV ar[logit(bπ)]
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• Using the fact that, logit(bπ) can be formed by using the logit for a single binomial
sample, in large samples, for the binomial, the variance estimate of the logit is

dV ar(logit(bπ)) =
1

n10
+

1

n01

• Then, a large sample 95% confidence interval for β = log(OR) is

logit(bπ) ± 1.96

s
1

n10
+

1

n01

and we can exponentiate the endpoints to get a large sample confidence interval for
the odds ratio:

exp

"
logit(bπ) ± 1.96

s
1

n10
+

1

n01

#
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Testing

• Suppose you want to test
H0 : β = log(OR) = 0

• This is equivalent to testing

H0 : π =
eβ

1 + eβ
=

e0

1 + e0
= .5

• We can base the test statistic for this null on the distribution of n10.

Z =
n10 − E(n10|H0 : β = 0)p

V ar(n10|H0 : β = 0)
∼ N(0, 1)

• Under the null,
n10 ∼ Bin [(n10 + n01), .5]
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• In particular, under the null
H0 : β = 0

or equivalently,

H0 : π =
eβ

1 + eβ
=

e0

1 + e0
= .5

E(n10|H0 : β = 0) = (n10 + n01).5

and

V ar(n10|H0 : β = 0) = (n10 + n01).5(1 − .5)

= (n10 + n01).25
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• Putting these in Z, we get

Z =
n10−E(n10|n10+n01)√

V ar(n10|n10+n01)

=
n10−(n10+n01).5√

(n10+n01).25

=
.5[n10−n01]

.5
√

(n10+n01)

=
[n10−n01]√
(n10+n01)

or

Z2 =
[n10 − n01]2

n10 + n01
∼ χ2

1

which has popularly been come to known as McNemar’s Statistic for matched pairs.
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• For matched pairs, if we treat each pair as a strata, and use the Mantel-Haenzsel test
for conditional independence between Exposure and Disease given strata, we also get
McNemar’s test:

Z2 =
[n10 − n01]2

n10 + n01
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(2 × 2) table for matched pairs

• Often you will see matched pair data summarized in a (2 × 2) table as follows:
Matched Case-Control study

CASE
UNEXPOSED EXPOSED

UNEXPOSED n11 n10 n1+

CONTROL
EXPOSED n01 n00 n0+

total n+1 n+0 n

Matched Pairs Clinical Trial

NEW TREATMENT
FAILURE SUCCESS

FAILURE n11 n10 n1+

PLACEBO
SUCCESS n01 n00 n0+

total n+1 n+0 n
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• Then, the estimated odds ratio is obtained as the ratio of the off diagonal elements:

dOR =
n10

n01
.

and McNemar’s chi-square (=Mantel-Haenszel ), is

Z2 =
[n10 − n01]2

n10 + n01
∼ χ2

1

• Exact p−value can be obtained by using one sample binomial test for
Ho : β = 0 (Ho : π = .5) when there are n10 successes in n10 + n01 trials.
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Above Example using SAS Proc Freq

data pair;
input pair trt out @@;

/* out : 1=S, 0=F */
/* trt : 1=New, 0=Plac */

cards;
1 1 1 1 0 0 2 1 0 2 0 0 3 1 1 3 0 0
4 1 1 4 0 0 5 1 1 5 0 1 6 1 1 6 0 0
7 1 1 7 0 0 8 1 0 8 0 0 9 1 1 9 0 0

10 1 1 10 0 0 11 1 0 11 0 1 12 1 1
12 0 0 13 1 0 13 0 1 14 1 1 14 0 0
15 1 1 15 0 0 16 1 1 16 0 1 17 1 0
17 0 1 18 1 1 18 0 1 19 1 1 19 0 1
20 1 0 20 0 1 21 1 0 21 0 1 22 1 0
22 0 0 23 1 0 23 0 1 24 1 1 24 0 1
25 1 1 25 0 1 26 1 0 26 0 1 27 1 1
27 0 1 28 1 1 28 0 0 29 1 0 29 0 1
30 1 1 30 0 1
;
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proc freq;
table pair*trt*out / cmh;

run;

/* Proc Freq Output */

SUMMARY STATISTICS FOR TRT BY OUT
CONTROLLING FOR PAIR

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
--------------------------------------------------------------

1 Nonzero Correlation 1 0.474 0.491
2 Row Mean Scores Differ 1 0.474 0.491
3 General Association 1 0.474 0.491

Estimates of the Common Relative Risk (Row1/Row2)
95%

Type of Study Method Value Confidence Limits
--------------------------------------------------------------
Case-Control Mantel-Haenszel 1.375 0.5531 3.4184
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• With a little data reformatting (to be seen later), we have

table_ Cumulative Cumulative
pattern Frequency Percent Frequency Percent
------------------------------------------------------------
0*0 3 10.00 3 10.00
0*1 8 26.67 11 36.67
1*0 11 36.67 22 73.33
1*1 8 26.67 30 100.00

• Where “0*0” represents 3 matched pairs had no successes (i.e., treatment = failure
and placebo = failure)

• (refer back to slides 6 & 7, pairs 2, 8 and 22)

• Note that the CMLE is

dORCMLE =
n10

n01
=

11

8
= 1.375
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Using Proc Logistic for Conditional Logistic Regression

proc logistic descending;
class pair;
model out = pair trt ;
exact trt / estimate = both /*both = logor & or */;
run;

/* Conditional Logistic Regression Output */

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

trt Score 0.4737 0.6476 0.5755
Probability 0.1442 0.6476 0.5755
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Exact Parameter Estimates

95% Confidence
Parameter Estimate Limits p-Value

trt 0.3185 -0.6857 1.3706 0.6476

Exact Odds Ratios

95% Confidence
Parameter Estimate Limits p-Value

trt 1.375 0.504 3.938 0.6476

Lecture 26: Conditional Logistic Models for Matched Pairs – p. 42/49



Transforming data in SAS for McNemar’s

data trt(drop=trt);
set pair;
where trt=1;
rename out=trtout;

run;

data plac(drop=trt);
set pair;
where trt=0;
rename out=placout;

run;

data new;
merge trt plac;
by pair;

proc print noobs;
run;
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/* DATASET NEW */
PAIR TRTOUT PLACOUT

1 1 0
2 0 0
3 1 0
4 1 0
5 1 1
6 1 0
7 1 0
8 0 0
9 1 0
10 1 0
11 0 1
12 1 0

...
29 0 1
30 1 1
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McNemar’s

We will use Proc Freq to get the data for McNemar’ Stat,
proc freq order=freq;
table trtout*placout/agree;

run;

TRTOUT PLACOUT

Col Pct | 1| 0| Total
---------+--------+--------+

1 | 8 | 11 | 19
| 26.67 | 36.67 | 63.33
| 42.11 | 57.89 |
| 50.00 | 78.57 |

---------+--------+--------+
0 | 8 | 3 | 11

| 26.67 | 10.00 | 36.67
| 72.73 | 27.27 |
| 50.00 | 21.43 |

---------+--------+--------+
Total 16 14 30

53.33 46.67 100.00
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Statistics for Table of trtout by placout

McNemar’s Test
-----------------------
Statistic (S) 0.4737
DF 1
Pr > S 0.4913

• Then, the estimated odds ratio is obtained as the ratio of the off diagonal elements:

dOR =
n10

n01
=

11

8
= 1.375

and McNemar’s chi-square (=Mantel-Haenszel = Conditional Score Stat), is

Z2 =
[n10 − n01]2

n10 + n01
=

(11 − 8)2

11 + 8
= 0.4737
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Exactp−values

• Proc Logistic using the EXACT option calculated the exact p−value

• Proc Freq calculated the large sample approximation

• If you would like to calculate the exact binomial probabilities, you can refer back to
lectures 02 or 25
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data pvalues;
input outcome $ count;
p_largesample = 1 - probchi(0.4737,1);

cards;
1succ 11
2fail 8
;
run;
proc print data=pvalues;
var p_largesample;

run;
proc freq data=pvalues;
tables outcome / binomial;
weight count;
exact binomial;

run;
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Obs p_largesample

1 0.49129
2 0.49129 <- prints twice due to 2 data lines

The FREQ Procedure

Binomial Proportion
for outcome = 1succ

-----------------------------------
Test of H0: Proportion = 0.5

ASE under H0 0.1147
Z 0.6882
One-sided Pr > Z 0.2456
Two-sided Pr > |Z| 0.4913

Exact Test
One-sided Pr >= P 0.3238
Two-sided = 2 * One-sided 0.6476

Sample Size = 19
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