Lecture 26: Conditional Logistic Models for Matched Pairs

Dipankar Bandyopadhyay, Ph.D.

BMTRY 711: Analysis of Categorical Data Spring 2011
Division of Biostatistics and Epidemiology
Medical University of South Carolina

Conditional Logistic Regression

Purpose

1. Eliminate unwanted nuisance parameters
2. Use with sparse data

- Suppose, we can group our covariates into J unique combinations
- and as such, we can form $j(2 \times 2)$ tables
- Think of each of the j stratum as a matched pair (or matched set if R:1 matching used)

Conditional Logistic Regression, Matched Pairs

Question: When would you have small strata sample sizes y_{j++} ?

Answer: Matched pairs study

- Matched pairs studies have become increasingly popular in biostatistics and epidemiology.
- For example, in a matched case-control study, you select a case, and then try to match a control to the case, you may match on variables like age, sex, race, etc. The case and control make up a 'strata'.
- Alternatively, unlike the matched case-control, you could match individuals by age, sex, race, etc., and then give them two different treatments, and see if the patients respond or don't respond to treatment; this would be a matched prospective study.
- Going one-step further, you can do a cross-over trial, in which you give the same patient two different drugs, and see if the patient responds or doesn't respond to the treatment; here the strata consists of the two binary measurements on the same subject.
- In general, matching yields more precision than an unmatched study, but matching can be complicated (See Klienbaum \& Klien Chp 8)
- In these matched studies, besides treatment (or exposure), there may be other covariates of interest as well.
- These 'other' covariates of interest cannot be matching variables, or their effects will drop out of the conditional likelihood.
- In these matched studies, the stratum sample sizes are $y_{j++}=2$.
- Which is small

Example

- With data like this, you have $j=1, \ldots, J$ strata (2×2) tables with one subject on each treatment, or, equivalently, one case and one control. The total sample size for each table is $y_{j++}=2$.
- For ease of notation and exposition, we will consider a prospective matched pairs study, although since we will be conditioning on both margins of the (2×2), the methods can be used for prospective or case-control studies.
- In a clinical trial (prospective study), you match two patients in the same hospital on age, sex, race, etc., and give one patient treatment 1 and the other patient treatment 2. The bernoulli outcome could be the recurrence of cancer. The resulting data look like that on the following page.

	OUTCOME					OUTCOME	
Pair	TRT	SUCC	FAIL	Pair	TRT	SUCC	FAIL
1	NEW	1	0	16	NEW	1	0
	PLAC	0	1		PLAC	1	0
2	NEW	0	1	17	NEW	0	1
	PLAC	0	1		PLAC	1	0
3	NEW	1	0	18	NEW	1	0
	PLAC	0	1		PLAC	1	0
4	NEW	1	0	19	NEW	1	0
	PLAC	0	1		PLAC	1	0
5	NEW	1	0	20	NEW	0	1
	PLAC	1	0		PLAC	1	0
6	NEW	1	0	21	NEW	0	1
	PLAC	0	1		PLAC	1	0
7	NEW	1	0	22	NEW	0	1
	PLAC	0	1		PLAC	0	1

8	NEW	0	1	23	NEW	0	1
	PLAC	0	1		PLAC	1	0
9	NEW	1	0	24	NEW	1	0
	PLAC	0	1		PLAC	1	0
10	NEW	1	0	25	NEW	1	0
	PLAC	0	1		PLAC	1	0
11	NEW	0	1	26	NEW	0	1
	PLAC	1	0		PLAC	1	0
12	NEW	1	0	27	NEW	1	0
	PLAC	0	1		PLAC	1	0
13	NEW	0	1	28	NEW	1	0
	PLAC	1	0		PLAC	0	1
14	NEW	1	0	29	NEW	0	1
	PLAC	0	1		PLAC	1	0
15	NEW	1	0	30	NEW	1	0
	PLAC	0	1		PLAC	1	0

Again, the $j^{\text {th }}(2 \times 2)$ table ($j^{\text {th }}$ Strata) of cell counts looks like:
TABLE j (or stratum ' j ')
Variable (Y)

However, the following are the only unique combinations of data possible

		Y		
		Success	Failure	
X		1	0	1
	Placebo	1	0	1

		Y		
		Success	Failure	
X	New	0	1	1
	Placebo	0	1	1

		Y		
		Success	Failure	
X		1	0	1
	Placebo	0	1	1

		Y		
		Success	Failure	
X	New	0	1	1
	Placebo	1	0	1

- Each matched pair form a strata, and, you can never have more than 2 subjects in a stratum.
- For this prospective study, the rows in stratum j are independent Bernoulli random variables (Binomial with sample size 1), with the subject on the new treatment (row 1),

$$
Y_{j 11} \sim \operatorname{Bern}\left(p_{j 1}\right)
$$

where

$$
\operatorname{logit}\left(p_{j 1}\right)=\alpha_{j}+\beta
$$

and α_{j} is the effect of the $j^{t h}$ stratum (the matching variables), and the subject on placebo (row 2) has

$$
Y_{j 21} \sim \operatorname{Bern}\left(p_{j 2}\right)
$$

where

$$
\operatorname{logit}\left(p_{j 2}\right)=\alpha_{j}
$$

- Note, if this was a matched case-control study, then the we can still use the above (prospective study) model, in which we rewrite the logits as

$$
\operatorname{logit}\left(p_{j 1}\right)=\alpha_{j}^{*}+\beta
$$

and

$$
\operatorname{logit}\left(p_{j 2}\right)=\alpha_{j}^{*}
$$

Here, the intercept α_{j}^{*} is not the true α_{j}. However, in our minds, these intercepts, α_{j}^{*}, are nuisance parameters that we do not want to estimate, anyway. Also, β is still the log-odds ratio of interest.

- Now, using conditional likelihood theory we know that, if we further condition on the columns (so that we have a (2×2) table with both margins fixed), the conditional likelihood is only a function of the odds ratio for the (2×2) table.
- For this (2×2) table, the log-odds ratio is

$$
\begin{gathered}
\operatorname{logit}\left(p_{j 1}\right)-\operatorname{logit}\left(p_{j 2}\right)= \\
{\left[\alpha_{j}+\beta\right]-\alpha_{j}=\beta}
\end{gathered}
$$

- Thus, we can form a conditional likelihood, eliminating the unwanted nuisance parameters α_{j}, (or α_{j}^{*}) by conditioning on both margins.

Conditional Likelihood for Matched Pairs

- Now, we will show that, for a matched pairs study, the conditional likelihood has a particularly simple form.
- We can even use unconditional logistic regression to estimate the parameters.
- With both margins fixed, we only need to consider one random variable in the (2×2) table, and, again, we will consider

$$
Y_{j 11}
$$

- Since, the rows $Y_{j 1+}=Y_{j 2+}=1$ are fixed by design (one patient on each treatment), the possible table configurations are

		Y		
		Success	Failure	
X		1	0	1
	New			
		1	0	1

		Y		
		Success	Failure	
X	New	0	1	1
	Placebo	0	1	1
		0	2	2

		Y		
		Success	Failure	
X	New	1	0	1
	Placebo	0	1	1

		Y		
		New	0	1
X			1	
	Placebs	1	0	1
		1	1	2

- Now, we condition on both margins, although, given both row totals equal 1, we only need to condition on the first column total Y_{j+1}, since the second column total equals $2-Y_{j+1}$.
- The conditional likelihood is made up of the products over strata of

$$
P\left[Y_{j 11}=y_{j 11} \mid Y_{j+1}\right]
$$

(For ease of notation, we have dropped $y_{j 1+}$ and $y_{j 2+}$ since they are fixed by design).

- We know that there are only four possible tables for each stratum.
- First, let's consider the situation when either the patient on treatment 1 or the patient or treatment 2 succeeds, but not both, i.e., the first column total $Y_{j+1}=1$.
- Then, we could see either of the following (2×2) tables

TRT	SUCC	FAIL	
-------	$--l^{2}$		
NEW	1	0	1
PLAC	0	1	1
	1	1	2
TRT	SUCC	FAIL	
-------	------	----	
NEW	0	1	1
PLAC	1	0	1
	1	1	2

- Now, given both margins are $(1,1), Y_{j 11}$ can take on 2 possible values, 0 or 1 .
- Suppose we let

$$
\pi=P\left[y_{j 11}=1 \mid Y_{j+1}=1\right]
$$

- Now, the definition of a bernoulli variable is one that can only take on values 0 or 1 , so $\left\{Y_{j 11} \mid y_{j+1}=1\right\}$ is Bernoulli with probability distribution

$$
\pi^{y_{j 11}}(1-\pi)^{1-y_{j 11}}
$$

- Then, we need to determine π.

The non-central hypergeometric

- Using the non-central hypergeometric,

$$
\begin{aligned}
& \pi=P\left[Y_{j 11}=y_{j 11} \mid Y_{j+1}=1\right]= \\
& \frac{\binom{y_{j+1}}{y_{j 11}}\binom{y_{j++}-y_{j+1}}{y_{j 1+}-y_{j 11}}\left(O R_{j}\right)^{y_{j 11}}}{\sum_{\ell(}\binom{y_{j+1}}{\ell}\binom{y_{j++}-y_{j+1}}{y_{j 1+}-\ell}\left(O R_{j}\right)^{\ell}}= \\
& \left(\begin{array}{c}
1 \\
1 \\
y_{j 11}
\end{array}\right)\left(\begin{array}{c}
1-y_{j 11}
\end{array}\right) e^{\left.(\beta) y_{j 11}\right)} \\
& \sum_{\ell=0}^{1}\binom{1}{\ell}\binom{1}{1-\ell} e^{(\beta) \ell}
\end{aligned}
$$

- Then, the probability $Y_{j 11}=1$ is

$$
\begin{aligned}
& \pi=P\left[Y_{j 11}=1 \mid Y_{j+1}=1\right]= \\
& \frac{\binom{1}{1}\binom{1}{0} e^{(\beta) 1}}{\binom{1}{0}\binom{1}{1-0} e^{(\beta) 0}+\binom{1}{1}\binom{1}{1-1} e^{(\beta) 1}}=\frac{e^{\beta}}{1+e^{\beta}}
\end{aligned}
$$

- Then

$$
\pi=P\left[Y_{j 11}=1 \mid Y_{j+1}=1\right]=\frac{e^{\beta}}{1+e^{\beta}}
$$

or, equivalently, the log-odds ratio (β) of interest actually equals the logit of the conditional probability:

$$
\operatorname{logit}(\pi)=\operatorname{logit}\left\{P\left[Y_{j 11}=1 \mid Y_{j+1}=1\right]\right\}=\beta
$$

- Then, the distribution of

$$
\left\{Y_{j 11} \mid Y_{j+1}=1\right\} \sim \operatorname{Bern}\left(\frac{e^{\beta}}{1+e^{\beta}}\right)
$$

which, again is not a function of α_{j},

- Then, the contribution to the conditional likelihood from this stratum is

$$
L_{j}(\beta)=\left(\frac{e^{\beta}}{1+e^{\beta}}\right)^{y_{j 11}}\left(\frac{1}{1+e^{\beta}}\right)^{\left(1-y_{j 11}\right)}
$$

- Next, consider the case when both the treatment and placebo subjects have a successful response, $Y_{j+1}=2$,

TRT	SUCC	FAIL	
-------	------	----	
NEW	1	0	1
PLAC	1	0	1
	2	0	2

- We see that the conditional probability

$$
\begin{aligned}
& P\left[y_{j 11}=0 \mid Y_{j+1}=2\right]=0, \\
& P\left[y_{j 11}=1 \mid Y_{j+1}=2\right]=1,
\end{aligned}
$$

and

$$
P\left[y_{j 11}=2 \mid Y_{j+1}=2\right]=0,
$$

- This conditional distribution is said to be degenerate, all the probability is located at $Y_{j 11}=1$. Also, this conditional distribution is not a function of the parameter of interest β.
- Next, consider the case when both the treatment and placebo subjects fail, $Y_{j+1}=0$,

TRT	SUCC	FAIL	
-------	------	----	
NEW	0	1	1
PLAC	0	1	1
	0	2	2

- We see that the conditional probability

$$
\begin{aligned}
& P\left[y_{j 11}=0 \mid Y_{j+1}=0\right]=1, \\
& P\left[y_{j 11}=1 \mid Y_{j+1}=0\right]=0,
\end{aligned}
$$

and

$$
P\left[y_{j 11}=2 \mid Y_{j+1}=0\right]=0
$$

- This conditional distribution is also degenerate, all the probability is located at $Y_{j 11}=0$. Also, this conditional distribution is not a function of the parameter of interest β.
- Then, only strata with 1 in each margin contribute any information about β when conditioning on both margins:

TRT	SUCC	FAIL	
-------	$--l^{2}$		
NEW	1	0	1
PLAC	0	1	1
	1	1	2
TRT	SUCC	FAIL	
-------	------	----	
NEW	0	1	1
PLAC	1	0	1
	1	1	2

- If this was a matched case-control study, we still have that only tables with one in each margin contribute, (only the tables with one subject exposed, and one not exposed), contribute to the conditional likelihood,

	Case	Control	
Exposed	1	0	1
Not Exposed	0	1	1
	1	1	
	Case	Control	
Exposed	0	1	1
Not Exposed	1	0	1

- Pairs like these are sometimes called 'discordant pairs'.
- Note, in these discordant pairs, there is a 1 in every margin:

$$
Y_{j+1}=Y_{j+2}=1 \quad \text { and } \quad Y_{j 1+}=Y_{j 2+}=1
$$

- Alternatively, we can also write the discordant pairs as the pairs with

$$
Y_{j 11} \neq Y_{j 21}
$$

Conditional Likelihood

- In other words, for a prospective or case-control study, the conditional likelihood can be reduced to a product over strata with 1 in every margin ($Y_{j+1}=1$ and $Y_{j 1+}=1$), or, equivalently. strata with $Y_{j 11} \neq Y_{j 21}$.

$$
\begin{aligned}
L^{c}(\beta) & =\prod_{j: Y_{j 1+}=Y_{j+1}=1} L_{j}(\beta) \\
& =\prod_{j: Y_{j 1+}=Y_{j+1}=1}\left(\frac{e^{\beta}}{1+e^{\beta}}\right)^{y_{j 11}}\left(\frac{1}{1+e^{\beta}}\right)^{1-y_{j 11}} \\
& =\left(\frac{e^{\beta}}{1+e^{\beta}}\right)^{n_{10}}\left(\frac{1}{1+e^{\beta}}\right)^{n_{01}}
\end{aligned}
$$

- Where

$$
n_{10}
$$

is the number of matched pairs with the following (2×2) table (case exposed, control unexposed) or (new treatment successful, old treatment fail)

		D
E	1	not D
not	0	1

- Note that the subscript 10 , in n_{10} is a pneumonic for the first row of the table containing a 1 in the first cell (a success) and a 0 in the second cell (a failure)
- And

$$
n_{01}
$$

is the number of matched pairs with the following (2×2) table (case unexposed, control exposed), (new treatment fails, old treatment succeeds) :

	D	not D
E	0	1
E	1	0

The Conditional Maximum likelihood estimator (CMLE)

- The conditional likelihood is proportional to a binomial likelihood with sample size $n^{*}=n_{10}+n_{01}$.

$$
\left(\frac{e^{\beta}}{1+e^{\beta}}\right)^{n_{10}}\left(\frac{1}{1+e^{\beta}}\right)^{n^{*}-n_{10}}=\pi^{n_{10}}(1-\pi)^{n^{*}-n_{10}}
$$

where

$$
\pi=P\left[y_{j 11}=1 \mid Y_{j+1}=1\right]=\frac{e^{\beta}}{1+e^{\beta}}
$$

- Applying the results maximum likelihood results for a single binomial sample with success probability π, and n_{10} success out of $n^{*}=n_{10}+n_{01}$ trials, the CMLE of π is

$$
\widehat{\pi}=\frac{n_{10}}{n^{*}}=\frac{n_{10}}{n_{10}+n_{01}}
$$

- Since

$$
\pi=P\left[y_{j 11}=1 \mid Y_{j+1}=1\right]=\frac{e^{\beta}}{1+e^{\beta}}
$$

as in logistic regression,

$$
\beta=\operatorname{logit}(\pi)
$$

- The CMLE of the log-odds ratio $\beta=\operatorname{logit}(\pi)$ is

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\operatorname{logit}(\widehat{\pi}) \\
& =\log \left(\frac{n_{10}}{n^{*}-n_{10}}\right) \\
& =\log \left(\frac{n_{10}}{n_{01}}\right)
\end{aligned}
$$

- Then, the CMLE of the OR is

$$
\widehat{O R}_{C M L E}=e^{\hat{\boldsymbol{\beta}}}=\frac{n_{10}}{n_{01}}
$$

- Now, you can show that the Mantel-Haenszel estimate of the common odds ratio also equals

$$
\widehat{O R}_{M H}=\widehat{O R}_{C M L E}=\frac{n_{10}}{n_{01}}
$$

- Thus, as we discussed before, the Mantel-Haenzsel estimator works well when the strata sizes are small.

Test for $\beta=0$

- Since

$$
\left\{Y_{j 11} \mid Y_{j+1}=1\right\} \sim \operatorname{Bern}\left(\frac{e^{\beta}}{1+e^{\beta}}\right)
$$

and the sum of independent Bernoullis is Binomial, we have that n_{10} given $\left(n_{10}+n_{01}\right)$ is binomial:

$$
n_{10}=\sum_{j: Y_{j+1}=Y_{j 1+}=1} Y_{j 11} \sim \operatorname{Bin}\left[\left(n_{10}+n_{01}\right), \frac{e^{\beta}}{1+e^{\beta}}\right]
$$

- In particular, we have a binomial sample of size $\left(n_{10}+n_{01}\right)$ with n_{10} successes, and success probability

$$
\pi=\frac{e^{\beta}}{1+e^{\beta}}
$$

Conditional Confidence Interval for OR

- A 95% confidence interval for $\beta=\log (O R)$ is

$$
\hat{\boldsymbol{\beta}} \pm 1.96 \sqrt{\widehat{\operatorname{Var}}[\hat{\boldsymbol{\beta}}]}
$$

- However, since

$$
\hat{\boldsymbol{\beta}}=\operatorname{logit}(\widehat{\pi})=\log \left(\frac{n_{10}}{n_{01}}\right)
$$

the confidence interval can be equivalently written as

$$
\operatorname{logit}(\widehat{\pi}) \pm 1.96 \sqrt{\widehat{\operatorname{Var}}[\operatorname{logit}(\widehat{\pi})]}
$$

- Using the fact that, logit $(\widehat{\pi})$ can be formed by using the logit for a single binomial sample, in large samples, for the binomial, the variance estimate of the logit is

$$
\widehat{\operatorname{Var}}(\operatorname{logit}(\widehat{\pi}))=\frac{1}{n_{10}}+\frac{1}{n_{01}}
$$

- Then, a large sample 95% confidence interval for $\beta=\log (O R)$ is

$$
\operatorname{logit}(\widehat{\pi}) \pm 1.96 \sqrt{\frac{1}{n_{10}}+\frac{1}{n_{01}}}
$$

and we can exponentiate the endpoints to get a large sample confidence interval for the odds ratio:

$$
\exp \left[\operatorname{logit}(\widehat{\pi}) \pm 1.96 \sqrt{\frac{1}{n_{10}}+\frac{1}{n_{01}}}\right]
$$

Testing

- Suppose you want to test

$$
H_{0}: \beta=\log (O R)=0
$$

- This is equivalent to testing

$$
H_{0}: \pi=\frac{e^{\beta}}{1+e^{\beta}}=\frac{e^{0}}{1+e^{0}}=.5
$$

- We can base the test statistic for this null on the distribution of n_{10}.

$$
Z=\frac{n_{10}-E\left(n_{10} \mid H_{0}: \beta=0\right)}{\sqrt{\operatorname{Var}\left(n_{10} \mid H_{0}: \beta=0\right)}} \sim N(0,1)
$$

- Under the null,

$$
n_{10} \sim \operatorname{Bin}\left[\left(n_{10}+n_{01}\right), .5\right]
$$

- In particular, under the null

$$
H_{0}: \beta=0
$$

or equivalently,

$$
\begin{gathered}
H_{0}: \pi=\frac{e^{\beta}}{1+e^{\beta}}=\frac{e^{0}}{1+e^{0}}=.5 \\
E\left(n_{10} \mid H_{0}: \beta=0\right)=\left(n_{10}+n_{01}\right) .5
\end{gathered}
$$

and

$$
\begin{aligned}
\operatorname{Var}\left(n_{10} \mid H_{0}: \beta=0\right) & =\left(n_{10}+n_{01}\right) \cdot 5(1-.5) \\
& =\left(n_{10}+n_{01}\right) \cdot 25
\end{aligned}
$$

- Putting these in Z, we get

$$
\begin{aligned}
Z & =\frac{n_{10}-E\left(n_{10} \mid n_{10}+n_{01}\right)}{\sqrt{\operatorname{Var}\left(n_{10} \mid n_{10}+n_{01}\right)}} \\
& =\frac{n_{10}-\left(n_{10}+n_{01}\right) .5}{\sqrt{\left(n_{10}+n_{01}\right) .25}} \\
& =\frac{.5\left[n_{10}-n_{01}\right]}{.5 \sqrt{\left(n_{10}+n_{01}\right)}} \\
& =\frac{\left[n_{10}-n_{01}\right]}{\sqrt{\left(n_{10}+n_{01}\right)}}
\end{aligned}
$$

or

$$
Z^{2}=\frac{\left[n_{10}-n_{01}\right]^{2}}{n_{10}+n_{01}} \sim \chi_{1}^{2}
$$

which has popularly been come to known as McNemar's Statistic for matched pairs.

- For matched pairs, if we treat each pair as a strata, and use the Mantel-Haenzsel test for conditional independence between Exposure and Disease given strata, we also get McNemar's test:

$$
Z^{2}=\frac{\left[n_{10}-n_{01}\right]^{2}}{n_{10}+n_{01}}
$$

(2×2) table for matched pairs

- Often you will see matched pair data summarized in a (2×2) table as follows: Matched Case-Control study

		CASE		
		UNEXPOSED	EXPOSED	
CONTROL	UNEXPOSED	n_{11}	n_{10}	n_{1+}
	EXPOSED	n_{01}	n_{00}	n_{0+}
total		n_{+1}	n_{+0}	n

Matched Pairs Clinical Trial

NEW TREATMENT		
FAILURE	SUCCESS	
n_{11}	n_{10}	n_{1+}
n_{01}	n_{00}	n_{0+}
n_{+1}	n_{+0}	n

- Then, the estimated odds ratio is obtained as the ratio of the off diagonal elements:

$$
\widehat{O R}=\frac{n_{10}}{n_{01}} .
$$

and McNemar's chi-square (=Mantel-Haenszel), is

$$
Z^{2}=\frac{\left[n_{10}-n_{01}\right]^{2}}{n_{10}+n_{01}} \sim \chi_{1}^{2}
$$

- Exact p-value can be obtained by using one sample binomial test for $H_{o}: \beta=0\left(H_{o}: \pi=.5\right)$ when there are n_{10} successes in $n_{10}+n_{01}$ trials.

Above Example using SAS Proc Freq

```
data pair;
    input pair trt out @@;
/* out : 1=S, 0=F */
/* trt : 1=New, 0=Plac */
cards;
    1
```



```
    7 1 1 1 7 0 0 8 8 1 0 8 0 0 9 1 1 1 9 0 0
```



```
12
```



```
17}0
```



```
22 0}0
25}1111425\mp@code{0
27}0
30 1 1 30 0 1
```

```
proc freq;
    table pair*trt*out / cmh;
run;
/* Proc Freq Output */
SUMMARY STATISTICS FOR TRT BY OUT
CONTROLLING FOR PAIR
Cochran-Mantel-Haenszel Statistics (Based on Table Scores)
\begin{tabular}{|c|c|c|c|c|}
\hline Statistic & Alternative Hypothesis & DF & Value & Prob \\
\hline 1 & Nonzero Correlation & 1 & 0.474 & 0.491 \\
\hline 2 & Row Mean Scores Differ & 1 & 0.474 & 0.491 \\
\hline 3 & General Association & 1 & 0.474 & 0.491 \\
\hline
\end{tabular}
Estimates of the Common Relative Risk (Row1/Row2)
    95%
```


- With a little data reformatting (to be seen later), we have

table_	Frequency	Percent	Cumulative Frequency	Cumulative
pattern	Percent			
$--~$	3	10.00		
$0 \star 0$	3	10.00	11	36.67
$0 \star 1$	8	26.67	22	73.33
$1 \star 0$	11	36.67	30	100.00

- Where "0*0" represents 3 matched pairs had no successes (i.e., treatment = failure and placebo = failure)
- (refer back to slides 6 \& 7, pairs 2, 8 and 22)
- Note that the CMLE is

$$
\widehat{O R}_{C M L E}=\frac{n_{10}}{n_{01}}=\frac{11}{8}=1.375
$$

Using Proc Logistic for Conditional Logistic Regression

```
proc logistic descending;
    class pair;
        model out = pair trt ;
        exact trt / estimate = both /*both = logor & or */;
    run;
```

/* Conditional Logistic Regression Output */
Exact Conditional Analysis
Conditional Exact Tests

			Statistic	E-- p-Value Exact
Effect	Test	Mid		
	Score	0.4737	0.6476	0.5755
	Probability	0.1442	0.6476	0.5755

Exact Parameter Estimates

Parameter	Estimate	Limits	p-Value	
trt	0.3185	-0.6857	1.3706	0.6476

Exact Odds Ratios

Parameter Estimate
trt 1.375
95\% Confidence Limits
p-Value
0.504
3.938
0.6476

Transforming data in SAS for McNemar's

```
data trt(drop=trt);
    set pair;
    where trt=1;
    rename out=trtout;
run;
data plac(drop=trt);
    set pair;
    where trt=0;
    rename out=placout;
run;
data new;
    merge trt plac;
        by pair;
proc print noobs;
    run;
```

/* DATASET NEW */		
PAIR	TRTOUT	PLACOUT
1	1	0
2	0	0
3	1	0
4	1	0
5	1	1
6	1	0
7	1	0
8	0	0
9	1	0
10	1	0
11	0	1
12	1	0
\cdots	0	1
30	1	1

McNemar's

We will use Proc Freq to get the data for McNemar' Stat, proc freq order=freq;
table trtout*placout/agree;
run;

TRTOUT	LACOUT		
Col Pct	1	0	Total
1	8	11	19
	26.67	36.67	63.33
	42.11	57.89	
	50.00	78.57	
0	8	3	11
	26.67	10.00	36.67
	72.73	27.27	
	50.00	21.43	
Total	16	14	30
	53.33	46.67	100.00

```
Statistics for Table of trtout by placout
    McNemar's Test
Statistic (S) 0.4737
DF 1
Pr > S 0.4913
```

- Then, the estimated odds ratio is obtained as the ratio of the off diagonal elements:

$$
\widehat{O R}=\frac{n_{10}}{n_{01}}=\frac{11}{8}=1.375
$$

and McNemar's chi-square (=Mantel-Haenszel = Conditional Score Stat), is

$$
Z^{2}=\frac{\left[n_{10}-n_{01}\right]^{2}}{n_{10}+n_{01}}=\frac{(11-8)^{2}}{11+8}=0.4737
$$

Exact p-values

- Proc Logistic using the EXACT option calculated the exact p-value
- Proc Freq calculated the large sample approximation
- If you would like to calculate the exact binomial probabilities, you can refer back to lectures 02 or 25

```
data pvalues;
    input outcome $ count;
    p_largesample = 1 - probchi(0.4737,1);
cards;
1succ 11
2fail 8
;
run;
proc print data=pvalues;
    var p_largesample;
run;
proc freq data=pvalues;
    tables outcome / binomial;
    weight count;
    exact binomial;
run;
```

```
Obs p_largesample
    1 0.49129
    2 0.49129 <- prints twice due to 2 data lines
```

The FREQ Procedure
Binomial Proportion
for outcome = 1succ
Test of HO: Proportion $=0.5$

ASE under HO	0.1147
Z	0.6882
One-sided $\operatorname{Pr}>\mathrm{Z}$	0.2456
Two-sided $\operatorname{Pr}>\|\mathrm{Z}\|$	0.4913

Exact Test
One-sided Pr >= P 0.3238
Two-sided $=2$ * One-sided 0.6476
Sample Size = 19

