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Matched Pairs

• We are going to conclude the semester examining models for repeated categorical
data

• Repeated observations are common in longitudinal studies

• Since the data are matched on subject, they are often statistically dependent

• This dependence needs to be incorporated into our statistical models

• Our first example is when we have two repeated observations
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Example

• 1600 British citizens were surveyed on the Prime Minister’s job performance

• Each citizen rated the Prime Minister as “approve” or “disapprove”

• Then, after 6 months, each citizen re-rates the Prime Minister

• A (2 × 2) table on the matched ratings is provided below

First Second Survey
Survey Approve Disapprove

Approve 794 150 944
Disapprove 86 570 656

Total 880 720 1600
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Summary Measures

• One way we can begin to examine these data is to calculate the Odds Ratio

OR = 794·570
86·150

= 35.1

• An OR of 35 indicates a strong association among opinions

• That is, the odds of approving after 6 months are over 35 times higher if a citizen
approved initially

• Also, 1364 of the 1600 did not change opinion after 6 months

• 236 changed opinion

• We are interested in seeing whether or not the general opinion is changing over time
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Dependent Proportion

• Let πab be the probability of outcome a for the first observation and b for the second

• For example, π11 is the probability of approving at baseline and after 6 months still
approving

• For a (2 × 2) table, the following table summarizes the true probabilities

First Second Survey
Survey Approve Disapprove

Approve π11 π12 π1+

Disapprove π21 π22 π2+

Total π+1 π+1 π++ = 1
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Marginal Homogeneity

• Marginal homogeneity occurs when

π1+ = π+1

• Note, since
π1+ − π+1 = 0

• Then
π1+ − π+1 = (π11 + π12) − (π11 + π21) = π12 − π21 = 0

• Then,

π21 − π12 = (π22 + π21) − (π22 + π12)

= π2+ − π+2

• Thus, the marginal homogeneity models has the marginal column probabilities
equaling the marginal row probabilities

• Or, the off diagonal probabilities are equal

• To develop a statistical test for this model, we will now consider the observed sample
information
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• let nab be the count of subjects moving from a to be b

• Then, in terms of the (2 × 2), the observed counts are

First Second Survey
Survey Approve Disapprove

Approve n11 n12 n1+

Disapprove n21 n22 n2+

Total n+1 n+1 n++
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Observed Proportions

• In terms of observed proportions

First Second Survey
Survey Approve Disapprove

Approve p11 p12 p1+

Disapprove p21 p22 p2+

Total p+1 p+1 p++ = 1

• where pab = nab/n++

• Let d = p+1 − p1+ = p2+ − p+2

• Note, d is the difference of two dependent proportions
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• If p+1 and p1+ were independent, then

var(d) = var(p+1 − p1+)

= var(p+1) + var(p1+)

=
p+1(1−p+1)

n+1
+

p1+(1−p1+)

n1+

• However, since p+1 and p1+ are dependent, then we need to subtract out the
covariance

• Thus

var(d) = var(p+1 − p1+) − 2cov(p+1, p1+)

where cov(p+1, p1+) equals
(p11p22 − p12p21)/n

• Therefore

var(
√

nd) = p+1(1 − p+1) + p1+(1 − p1+) − 2(p11p22 − p12p21)
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• After some algebra,

v̂ar(d) =
ˆ
(p12 + p21) − (p12 − p21)2

˜
/n

• This is the large sample (i.e., Wald or non-null) variance

• Thus, the test of marginal homogeneity is the same as testing

H0 : d = 0

• Using

z =
dq

v̂ar(d)
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McNemar’s Test

• Just as we have had all semester long, we could consider the variance under the null

• If π12 − π21, then and alternative variance under the null is

var0(d) =
p12 + p21

n
=

1/n(n12 + n21)

n
=

n12 + n21

n2

• Then testing using the null standard error would yield

z0 =
p+1−p1+√

var0(d)

=
(n11+n21−n11−n12)/n√

var0(d)

= n21−n12

n
√

var0(d)

= n21−n12

(n12+n21)1/2

• McNemar’s test is the square of z0 and is distributed as chi-square with 1 df .
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Revisiting Example

• We have observed a strong association (OR > 35), but does the marginal homogeneity
model hold?

First Second Survey
Survey Approve Disapprove

Approve 794 150 944
Disapprove 86 570 656

Total 880 720 1600

• For this data
p1+ = 944/1600 = 0.59

and
p+1 = 880/1600 = 0.55
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Difference in Dependent Proportions

• A large sample comparison of these proportions is

d = 0.55 − 0.59 = −0.04

• with standard error of

v̂ar(d) =
ˆ
(150 + 86) − (150 − 86)2

˜
/1600 = 0.000091188

• Thus, a large sample confidence interval is

−0.04 ± 1.96
√

0.000091188 = (−0.06,−0.02)

• Thus, the rating of the Prime Minister appears to have dropped between 2% and 6%
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McNemar’s

• McNemar’s Test is

z2
0 =

»
86 − 150

(86 + 150)1/2

–2

= (−4.17)2 = 17.3559

• Which is less than -1.96, so we have strong evidence to support a drop in rating
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Using SAS

data one;
input pre post count;
cards;
1 1 794
1 2 150
2 1 86
2 2 570
;

run;
proc freq;
tables pre*post /agree;
weight count;

run;
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Statistics for Table of pre by post

McNemar’s Test
------------------------
Statistic (S) 17.3559
DF 1
Pr > S <.0001
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Small Samplep−value

• The null hypothesis of marginal homogeneity is

H0 : π12 = π21

• Which is the same as
π21

π21 + π12
= 0.5

since
π21 = 0.5π21 + 0.5π12
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• Let n∗ = n21 + n12 (that is n∗ is the number of discordant (off diagonal pairs))

• Under H0, n21 ∼ b(n∗, 0.5)

• With E(n21) = 0.5n∗

• That is, the discordant data should be equally distributed if marginal homogenous

• The exact p−value is the binomial tail probability.

• Recall, exact binomial inference is based on the “as extreme or more extreme”
principle
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Example

• Consider the following made up example

Rating 2

Rating 1 1 2

1 35 12 47

2 3 40 43

38 52 90

• 90 subjects appears to be a large sample, but McNemar’s is only based on discordant
pairs

• For this example, we have 15 (=12+3) pairs

• We should consider using an exact method based on the binomial
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Binomial PDF macro

Recall our Binomial PDF macro
%macro mybinomialpdf(p,n);
dm "output" clear; dm "log" clear;
options nodate nocenter nonumber;
data myexample;

do i = 0 to &n;
prob = PDF(’BINOMIAL’,i,&p,&n) ;
cdf = CDF(’BINOMIAL’,i,&p,&n) ;
m1cdfprob = 1-cdf+prob;

output;
end;
label i = "Number of *Successes";
label prob = "P(Y=y) ";
label cdf = "P(Y<=y)";
label m1cdfprob="P(Y>=y)";

run;

title "Binomial PDF for N=&n and P=&p";
proc print noobs label split="*";
run;

%mend mybinomialpdf;
%mybinomialpdf(0.5,15); <-- null prob = 0.5, n* = 15
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Results

Binomial PDF for N=15 and P=0.5

Number of
Successes P(Y=y) P(Y<=y) P(Y>=y)

0 0.00003* 0.00003 1.00000
1 0.00046* 0.00049 0.99997
2 0.00320* 0.00369 0.99951
3 0.01389* 0.01758 0.99631
4 0.04166 0.05923 0.98242
5 0.09164 0.15088 0.94077
6 0.15274 0.30362 0.84912
7 0.19638 0.50000 0.69638
8 0.19638 0.69638 0.50000
9 0.15274 0.84912 0.30362
10 0.09164 0.94077 0.15088
11 0.04166 0.98242 0.05923
12 0.01389* 0.99631 0.01758 ** Observed case
13 0.00320* 0.99951 0.00369
14 0.00046* 0.99997 0.00049
15 0.00003* 1.00000 0.00003

* indicate as extreme or more extreme values

Exact P-value equals P (Y ≥ 12) + P (Y ≤ 3) = 0.01758 + 0.01758 = 0.03516
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Using SAS the easy way

• Using a “new” (version 9+?) version of SAS, you can get the exact p−value directly
from proc freq

data one;
input rate1 rate2 count @@;
cards;
1 1 35 1 2 12 2 1 3 2 2 40
;
run;
proc freq data=one;
weight count;
tables rate1*rate2 / agree;
exact mcnem;
run;

• Note the “exact” statement in proc freq
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Selected Results

Statistics for Table of rate1 by rate2

McNemar’s Test
----------------------------
Statistic (S) 5.4000
DF 1
Asymptotic Pr > S 0.0201
Exact Pr >= S 0.0352

• The computed exact p−value matches our binomial pdf result

• There is some disagreement among the exact and chi-square based p−value, but the
statistical conclusions are the same

• Just remember “large samples” for McNemar’s test implies a large number of
discordant pairs (and that the concordant pairs do not contribute to the test statistic)
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Marginal Homogeneity for> 2 levels

• McNemar’s Test is defined for a simple 2 × 2 table

• What if you have more than two levels in the classification?

• Consider a study in which 539 individuals where asked to what extent they agree with
the notation that either their fellow church members or other friends encouraged them
to exercise more

• The research question is to understand how the two different social support
mechanisms (church v. other friends) may be contributing to increasing exercise in
overweight individuals
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Data

Outside Friend

Church Member SA A D SD Total

SA 47 20 2 2 71

A 39 139 32 3 213

D 24 87 106 7 224

SD 5 5 11 10 31

Total 115 251 151 22 539

• Like McNemar’s, we are interested in testing

πk+ = π+k ∀k

• Or, in terms of cell probabilities

πij = πji ∀i, j

• Hence, we are testing for symmetry of the probabilities above and below the

concordant diagonal.

• which again translates into testing that the two marginal distributions are similar
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Using SAS

data two;
input ch_rate fr_rate count @@;
cards;
1 1 47 1 2 20 1 3 2 1 4 2
2 1 39 2 2 139 2 3 32 2 4 3
3 1 24 3 2 87 3 3 106 3 4 7
4 1 5 4 2 5 4 3 11 4 4 10
;

run;
proc freq data=two;
weight count;
tables ch_rate* fr_rate / agree;

run;
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Selected Results

• The test results are:

Test of Symmetry
------------------------
Statistic (S) 52.8288
DF 6
Pr > S <.0001

• However, interpreting the results, in this case, is easier if we collapse the categories

• This works since our data is ordinal and “agree” and “disagree” are easily understood
(groupings of nominal levels may not make sense)

data twob;
set two;
if ch_rate > 2 then ch_rate2 = 2; else ch_rate2 = 1;
if fr_rate > 2 then fr_rate2 = 2; else fr_rate2 = 1;

run;
proc freq data=twob;
weight count;
tables ch_rate2* fr_rate2 / agree;
run;

• Here, we are back to the regular McNemar’s test
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Selected results

Statistics for Table of ch_rate2 by fr_rate2

McNemar’s Test
------------------------
Statistic (S) 42.0250
DF 1
Pr > S <.0001

• 39 observations indicated that they agree church members are encouraging and
disagreed that other friends are encouraging

• 121 observations indicated that they agree friends are encouraging and that church
members are not

• Our results suggests that a respondent’s belief is that friends are more likely to
encourage increased exercise (p−value < 0.0001)
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Measures of Agreement

• Suppose we have a double dichotomy formed by each of n biostatisticians being rated
by two raters on a dichotomous scale:

RATER 2

(1) (2)
|Psychot |Neurotic| Total

R ---------+--------+--------+
A Psychotic| | |
T (1) | 50 | 10 | 60
E | | |
R ---------+--------+--------+

Neurotic | | |
1 (2) | 7 | 40 | 47

| | |
---------+--------+--------+
Total 57 50 107
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Data

Variable (W )

1 2

1
Variable (X)

2

Y11 Y12 Y1+

Y21 Y22 Y2+

Y+1 Y+2 n
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• In general,
X = (rating from rater 1) = 1 or 2

W = (rating from rater 2) = 1 or 2

• X and W can take on the same possible values, say,

1 = ‘positive rating’;

2 = ‘negative rating’.

• Neither margin is fixed by design, although the total number of subjects, n, usually is.
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• Two raters ‘agree’ if the give a subject the same rating, i.e., the raters agree if they
both rate subject i as a ‘1’ or they both rate subject i as a ‘2’.

• The simplest choice for a measure of agreement is the overall probability of agreement:

η = p11 + p22
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DISTINCTION BETWEEN AGREEMENT AND ASSO-

CIATION

• For two raters, X and W , to agree, they must fall in a diagonal of the (2 × 2) table.

• However, in general, for X and W to be associated, you should be able to predict one
from the other.
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• Consider the following (2 × 2) table

Rater 2 (W )

1 2
1 0 p12

Rater 1 (X)

2 p21 0

• For this table, the OR = 0, (log(OR) = −∞), which is perfect negative association:
Given the rating from Rater 1, you can perfectly predict the rating of Rater 2, i.e., if
X = 1, then W = 2. and if X = 2, then W = 1. Thus, the observations are highly
associated.

• However, the raters completely disagree, and agreement is low. Using the above
measure of agreement, it is 0, i.e.,

η = p11 + p22 = 0
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Another Measure

• Look at the previous measure of agreement,

η = p11 + p22

We will see that this is not a great measure of agreement, because it tends to be too
high, just by chance.

• If two raters independently rate the same subject, you would expect your measure of
agreement to be 0.

• By chance, if two raters independently rate the same subject,

pjk = pj+p+k,

and the measure of agreement η, is

η = p1+p+1 + p2+p+2 > 0 ,
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• For example, suppose the probability of giving a positive rating (rating=1) is high:

p1+ = p+1 = .9 and thus p2+ = p+2 = .1,

If the two raters are completely independent, still, by chance alone, the measure of
agreement is high:

η = .92 + .12 = .82,

• Thus, we need to scale this measure somehow; further, if the raters were independent,
we would want a measure of agreement to be 0.
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The Kappa Coefficient

• Cohen (1960) suggested the following measure, called ‘Kappa’,

κ =
η−(p1+p+1+p2+p+2)

1−(p1+p+1+p2+p+2)
,

=
(p11+p22)−(p1+p+1+p2+p+2)

1−(p1+p+1+p2+p+2)

• Here, we have subtracted off the value η under independence, so that, if the raters are
independent, κ = 0.

• Further, when agreement is perfect,

η = p11 + p22 = 1,

which leads to the maximum value of the numerator,

max{(p11 + p22) − (p1+p+1 + p2+p+2)} =

1 − (p1+p+1 + p2+p+2)
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• The denominator of κ is the maximum value of the numerator

• As such, the maximum value κ can take is 1:

κ =
max{η − (p1+p+1 + p2+p+2)}

1 − (p1+p+1 + p2+p+2)
= 1
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• However, κ can also be negative when agreement is poor. Consider the following
(2 × 2) table:

Rater 2
1 2

1 0 .5
Rater 1

2 .5 0

For this table,

κ =
(p11+p22)−(p1+p+1+p2+p+2)

1−(p1+p+1+p2+p+2)

=
0−(.52+.52)

1−(.52+.52)
= − 1

3
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Example

• Suppose we have n = 107 biostatisticians rated by two raters on a dichotomous scale:

RATER 2

|Psychot |Neurotic| Total
R ---------+--------+--------+
A Psychotic| | |
T | 50 | 10 | 60
E | | |
R ---------+--------+--------+

Neurotic | | |
1 | 7 | 40 | 47

| | |
---------+--------+--------+
Total 57 50 107

• Just looking at the table, there appears to be high agreement, but is it greater than
would be expected by chance?
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Using SAS

data one;
input rater1 rater2 count;
cards;
1 1 50
1 2 10
2 1 7
2 2 40
;

proc freq;
table rater1*rater2 / agree;

weight count;
run;

/* SELECTED OUTPUT */
Simple Kappa Coefficient

--------------------------------
Kappa 0.6797 <--- Okay, what does this
ASE 0.0711 value mean?
95% Lower Conf Limit 0.5403
95% Upper Conf Limit 0.8190

Sample Size = 107
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Interpretation of Kappa

• Interpretation of Kappa is typically based on the guidelines by Landis and Koch (1977)

• The break the values into three categories

• κ > 0.75 represents excellent agreement beyond chance

• 0.40 ≤ κ ≤ 0.75 represents fair to good agreement beyond chance

• κ < 0.40 represents poor agreement beyond chance
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Relationship of Kappa with McNemar’s Test

• McNemar’s (and the generalized test for symmetry) test the null hypothesis of marginal
homogeneity

• If McNemar’s test is statistically significant, the marginal probabilities differ

• Marginal probabilities differing suggests that the rows and columns are different

• If you want to test of the rows and columns are similar, you should consider Kappa

• In general, If Kappa is high, McNemar’s is low and vise versa
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Agreement with more than 2 categories

• Diagnoses of n = 400 biostatisticians by 2 raters:

Rater 2

|Psychot |Neurot |Organic | Total
R ---------+--------+--------+--------+
a Psychot | 75 | 1 | 4 | 80
t ---------+--------+--------+--------+
e Neurot | 5 | 4 | 1 | 10
r ---------+--------+--------+--------+

Organic | 0 | 0 | 10 | 10
1 ---------+--------+--------+--------+

Total 80 5 15 400
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Weighted v. Unweighted Kappa

• If The ratings are ordinal, allowing for some tolerance in disagreement is feasible

• For example, If one rater strongly agrees and the other just agrees, it seems like we
should account for the fact that both raters gave approximately the same rating

• One solution is to use the weighted κ (Fliess, 1980) for a K × K table.

• Suppose that agreement weights, say wjk, are assigned on rational grounds to the
cells of the (K × K) table:

• 1. wjj = 1

• 2. 0 ≤ wjk < 1 for j 6= k.

• 3. wjk = wkj , (the two raters are considered symmetrically).
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• Then, the ‘weighted’ proportion agreement is

ηw =
KX

j=1

KX

k=1

wjkpjk

and

• The, the ‘chance-expected’ weighted proportion agreement is

ηc =
KX

j=1

KX

k=1

wjkpj+p+k

• Then, the WEIGHTED KAPPA is

κw =
ηw − ηc

1 − ηc
.

Lecture 25: Models for Matched Pairs – p. 46/56



• One choice for the weights is the ‘simple weights’:

• 1. wjj = 1

• 2. wjk = 0 for j 6= k.

so that we are measuring agreement along the diagonal. When K = 2, this reduces to
the κ coefficient for a (2 × 2) table.

• Simple weights are appropriate if you are studying nominal ratings
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• Another possibility is

wjk = 1 − |j − k|
K − 1

,

which gives observations further apart in table less weight; for the above example, with
K = 3,

w12 = w21 = .5

w23 = w32 = .5

W13 = w31 = 0

and
w11 = w22 = w33 = 1.

• When K = 2, this also reduces to the κ coefficient for a (2 × 2) table.

• This style of weights is appropriate for ordinal ratings
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Example

Diagnoses in n = 400 biostatisticians by 2 raters:

Rater 2

|Psychot |Neurot |Organic | Total
R ---------+--------+--------+--------+
a Psychot | 75 | 1 | 4 | 80
t ---------+--------+--------+--------+
e Neurot | 5 | 4 | 1 | 10
r ---------+--------+--------+--------+

Organic | 0 | 0 | 10 | 10
1 ---------+--------+--------+--------+

Total 80 5 15 400

• Just looking at the table, there appears to be high agreement, but is it greater than
would be expected by chance?
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Using SAS

data one;
input rater1 rater2 count;
cards;
1 1 75
1 2 1
1 3 4
2 1 5
2 2 4
2 3 1
3 1 0
3 2 0
3 3 10
;

proc freq;
table rater1*rater2 / agree ;

weight count;
run;
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/* SELECTED OUTPUT */
Kappa Statistics

Statistic Value ASE 95% Confidence Limits
------------------------------------------------------------
Simple Kappa 0.6765 0.0877 0.5046 0.8484
Weighted Kappa 0.7222 0.0843 0.5570 0.8874

Sample Size = 100

• Which Kappa is to be reported?

• I would report the simple kappa since the classifications are nominal
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Revisiting Exercise Encouragement Example

• Recall our exercise example:

Outside Friend

Church Member SA A D SD Total

SA 47 20 2 2 71

A 39 139 32 3 213

D 24 87 106 7 224

SD 5 5 11 10 31

Total 115 251 151 22 539

• Here, a weighted Kappa is feasible

• Although, this example isn’t the typical kappa example (here, two ratings are given by
the subject; usually, two independent raters give ratings about a single subject
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Selected Results

• From the same PROC FREQ statement specified previously, we also get the following
output

Kappa Statistics

Statistic Value ASE 95% Confidence Limits
-------------------------------------------------------------
Simple Kappa 0.3428 0.0313 0.2815 0.4041
Weighted Kappa 0.3942 0.0314 0.3326 0.4559

Sample Size = 539

• Here, the weighted Kappa indicates “poor” agreement, but allowing form some
disagreement (weighting) does improve the overall agreement

• Poor agreement should not be a surprise, since the test for symmetry suggested levels
of support for exercise differed by type of person (church v. regular friend)
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SAS Notes

• SAS uses the scores assigned to each variable in the calculation of the sampling
weights

• Linear transformations of scores yield the same weighted kappa

• Non linear transformations yield different weighted kappa scores

• The same slides pertaining to the selection of scores for ordinal measures of
association apply to the selection of scores for weighted kappa
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Kappa Extensions

• If you have a stratification variable, you can calculate a stratum-specific kappa (κw)

• There is a “pooled” estimate of kappa that is calculated as

κ̂pooled =

P
w=1

dκm
Vm(dκm)

P
w=1

1
Vm(dκm)

• and

Vm( cκm) =
A + B − C

n(1 − pe)2

• where

A =
kP

i=1
πij [1 − (πi+ + π+i)(1 − bκ)]2

B = (1 − bκ)2
P P

i6=j
πij(π+i + πj+)2

C = [bκ − pe(1 − bκ)]2

pe =
kP

i=1
πi+π+i
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General Notes

• We have been concerned with “square tables”

• That is, the rows and columns have the same levels (descriptions and counts)

• Agreement, as measured by Kappa, is similar to a correlation and represents the
amount of density on the main diagonal

• McNemar’s measures marginal homogeneity...that is, does the proportion of a specific
response change between responses.

• Since the two matched responses tend to be positively correlated, we gain precision
(decrease the standard errors)

• That is, matched data design is more efficient and would require fewer subjects
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