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Sparse Tables

• Consider an arbitrary contingency table

• We could have a table that cross classifies students in BMTRY 711 for an arbitrary
year on
1. Race: White, black, and other
2. Gender: Male and female
3. Year: 1st, 2nd, and other

• In theory, all combinations are possible

• But in practice some combinations are unobserved

• What do the “zero” cells say about the relationship of race, gender and year?
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Sampling Zeros

• In our example (or current class),

• We have no White Males of any year

• However, “in theory” we would expect some in a given year

• That is, P (white male in 1st year) > 0 or

µwhite male in 1st year > 0

• When we would expect some observations in the ikj cell but fail to sample any, we
have sampling zeros
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Structural Zeros

• In some cases,
µijk = 0

• or the probability of observing a specific combination is zero

• When µ∗ = 0 for a specific cell in the table, we have a structural zero

• For example, in an oncology study that enrolls a cohort of individuals, you would
expect lung cancer in males and females; however, prostate cancer can biologically
occur only in males.

• Thus, a marginal table summed across all other factors could yield a similar table

Cancer Type
Lung Prostate Ovarian Other

Male µ > 0 µ > 0 n/a µ > 0

Female µ > 0 n/a µ > 0 µ > 0

• “n/a” is used here to distinguish a sampling zero from a structural zero
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A lot about nothing

• With sampling zeros, a larger (or different) sample may allow for observed values
where the present structural zeros may exists

• Note that 0 is a valid Poisson response with probability exp(µ∗)

• As such, it contributes to the likelihood function

• However, no matter how large the sample, structural zeros will always remain

• Thus, we have constraints that µ∗ = cµ∗ = n∗ = 0

• Contingency tables with structural tables are called incomplete tables

• We need to take the constraints into account when estimating the model parameters
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Sparse Tables and effects on G
2

• A small sample size (and hence a sparse table) affect the asymptotic convergence of
chi-square based tests

• If the total sample size (n) divided by the total number of cells (N) is less than 5
(n/N < 5), then the chi-square approximation of G2 is generally poor

• Pearson’s X2 may perform better, but a guideline generally isn’t accepted

• In the context of log-linear models, the delta-deviance (or delta-G2) with small degrees
of freedom generally are better approximated by a chi-square distribution
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Solutions to sampling zeros

• In the 2× 2 table we discussed at the start of the semester add .5 to all of the cells

• It was discussed (but not proven) that this actually produces less bias than the
“unadjusted” odds ratio

• For a generalized table, this approach may not always be your best bet

• For example, in a table with N = 30 cells, adding 1/2 to each of these cells may in fact
add too much data to the table

• One approach that is generally recommended is to perform sensitivity analyses to
check the robustness of the results
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Example

• Consider a multicenter clinical trial in with subjects are randomized to either Active
drug or placebo for the treatment of fungal infections.

• A binary response of a “success” “or failure” is recorded for each subject

Response
Center Tx Success Failure

1 A 0 5
P 0 9

2 A 1 12
P 0 10

3 A 0 7
P 0 5

4 A 6 3
P 2 6

5 A 5 9
P 2 12

• Note all of the zeros.
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SAS

options nocenter;
data one;
input center tx $ success fail;

count = success;
outcome = 1;
output;
count=fail;
outcome = 2;
output;
drop success fail;
cards;

1 A 0 5
1 P 0 9
2 A 1 12
2 P 0 10
3 A 0 7
3 P 0 5
4 A 6 3
4 P 2 6
5 A 5 9
5 P 2 12
;
run;
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Proc Logistic

proc logistic data=one;
freq count;
class center tx /param=ref;

model outcome(ref=’2’) = center tx;
run;

From LOG:
NOTE: PROC LOGISTIC is modeling the probability that outcome=1.
WARNING: There is possibly a quasi-complete separation of

data points. The maximum likelihood
estimate may not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning.
Results shown are based
on the last maximum likelihood iteration.
Validity of the model fit is questionable.
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Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

center 1 vs 5 <0.001 <0.001 >999.999
center 2 vs 5 0.113 0.012 1.041
center 3 vs 5 <0.001 <0.001 >999.999
center 4 vs 5 2.895 0.733 11.442
tx A vs P 4.693 1.186 18.564
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Proc GENMOD

proc genmod data=one;
class center tx outcome;
model count = center|tx|outcome@2 /dist=poi link=log;

run;

FROM LOG:
WARNING: The negative of the Hessian is not positive definite.

The convergence is questionable.
WARNING: The procedure is continuing but the validity of the model

fit is questionable.
WARNING: The specified model did not converge.
WARNING: Negative of Hessian not positive definite.
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Parameter DF Estimate Error Limits

***** Something fishy?*********
center*outcome 1 1 1 -25.4133 159175.4 -312004 311952.7
center*outcome 1 2 0 0.0000 0.0000 0.0000 0.0000
center*outcome 2 1 1 -2.1802 1.1327 -4.4003 0.0399
center*outcome 2 2 0 0.0000 0.0000 0.0000 0.0000
center*outcome 3 1 1 -25.3866 145462.6 -285127 285076.1
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Deleting sites

• Clinics 1 and 3 only have failures

• Thus, they do not affect the OR of treatment by success

• One solution to the convergence problems is to model the data without sites 1 and 3

proc logistic data=one;
where center in (2,4,5);
freq count;
class center tx /param=ref;
model outcome(ref=’2’) = center tx;
run;
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Selected results

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

center 2 vs 5 0.113 0.012 1.041
center 4 vs 5 2.895 0.733 11.442
tx A vs P 4.693 1.186 18.564

Note: This OR for the treatment is the same for the model with 5 sites
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CMH Estimator

proc freq data=one;
tables center*tx*outcome / cmh;
weight count;

run;
proc freq data=one;
where center in (2,4,5);

tables center*tx*outcome / cmh;
weight count;

run;

Lecture 24: Log-linear Models -Sparse Tables – p. 16/24



Selected Results

ALL SITES**************
Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
--------------------------------------------------------------------------
Case-Control Mantel-Haenszel 4.7151 1.1840 18.7768

(Odds Ratio) Logit ** 3.9677 1.0978 14.3395

ONLY SITES 2,4,5************
Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
-------------------------------------------------------------------------
Case-Control Mantel-Haenszel 4.7151 1.1840 18.7768

(Odds Ratio) Logit ** 3.9677 1.0978 14.3395

That is, sites with only one type of response do not contribute to the OR estimate
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Loglinear Model

Dropping sites 1 and 3 also make the loglinear model converge

proc genmod data=one;
where center in (2,4,5);
class center tx outcome;
model count = center|tx|outcome@2 /dist=poi link=log type3;

run;
----------

LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

center 2 4.76 0.0926
tx 1 2.86 0.0911
center*tx 2 1.44 0.4860
outcome 1 22.57 <.0001
center*outcome 2 12.20 0.0022
tx*outcome 1 5.49 0.0192

However, this model (the homogeneous association model) is the same as a logistic
regression model
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Log-linear results

Analysis Of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits

Intercept 1 2.5148 0.2785 1.9689 3.0606
center 2 1 -0.2270 0.4206 -1.0513 0.5973
center 4 1 -0.7597 0.4722 -1.6852 0.1658
center 5 0 0.0000 0.0000 0.0000 0.0000
tx A 1 -0.3588 0.4208 -1.1834 0.4659
tx P 0 0.0000 0.0000 0.0000 0.0000
outcome 1 1 -2.0223 0.6700 -3.3354 -0.7092
outcome 2 0 0.0000 0.0000 0.0000 0.0000
tx*outcome A 1 1 1.5460 0.7017 0.1708 2.9212
(the common odds ratio of tx with outcome exp(1.5460) = 4.69)
center*outcome 2 1 1 -2.1802 1.1327 -4.4003 0.0399

center*outcome 4 1 1 1.0631 0.7011 -0.3110 2.4373

center*tx 2 A 1 0.5682 0.5938 -0.5956 1.7319

center*tx 4 A 1 -0.2280 0.6771 -1.5550 1.0990
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Structural Zeros

• By default, if you have data with a zero count in GENMOD, it will be considered a
sampling zero

• By default, PROC CATMOD will consider it a structural zero

• To make GENMOD consider the zeros as structural, delete the observations with zero

• To make CATMOD consider the zeros as sampling, add a small weight (like the .5
approach, but much smaller like 10-6) to the count

• As stated before, I tend to use GENMOD more than CATMOD
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data two;
set one;
if count = 0 then delete;

run;
proc genmod data=two;
class tx outcome center;
model count = tx|outcome|center@2 /link=log dist=poi type3;

run;
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Analysis Of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits

Intercept 1 2.5084 0.2796 1.9604 3.0565
tx A 1 -0.3435 0.4213 -1.1692 0.4822
tx P 0 0.0000 0.0000 0.0000 0.0000
outcome 1 1 -1.9695 0.6710 -3.2847 -0.6543
outcome 2 0 0.0000 0.0000 0.0000 0.0000
tx*outcome A 1 1 1.4696 0.7164 0.0654 2.8738
tx*outcome A 2 0 0.0000 0.0000 0.0000 0.0000
tx*outcome P 1 0 0.0000 0.0000 0.0000 0.0000
tx*outcome P 2 0 0.0000 0.0000 0.0000 0.0000
center 1 1 -0.3112 0.4351 -1.1640 0.5415
center 2 1 -0.2059 0.4221 -1.0332 0.6215
center 3 1 -0.8990 0.5274 -1.9327 0.1347
center 4 1 -0.7655 0.4738 -1.6941 0.1632
center 5 0 0.0000 0.0000 0.0000 0.0000
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With Structural Zeros (model converged)

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits

tx*center A 1 1 -0.2443 0.6990 -1.6143 1.1257
tx*center A 2 1 0.5258 0.6007 -0.6515 1.7031
tx*center A 3 1 0.6800 0.7213 -0.7338 2.0938
tx*center A 4 1 -0.2098 0.6738 -1.5305 1.1108
tx*center A 5 0 0.0000 0.0000 0.0000 0.0000
tx*center P 1 0 0.0000 0.0000 0.0000 0.0000
tx*center P 2 0 0.0000 0.0000 0.0000 0.0000
tx*center P 3 0 0.0000 0.0000 0.0000 0.0000
tx*center P 4 0 0.0000 0.0000 0.0000 0.0000
tx*center P 5 0 0.0000 0.0000 0.0000 0.0000
outcome*center 1 2 * 1 -1.9850 1.1586 -4.2559 0.2859
outcome*center 1 4 * 1 1.0533 0.6968 -0.3124 2.4190
outcome*center 1 5 * 0 0.0000 0.0000 0.0000 0.0000
outcome*center 2 1 0 0.0000 0.0000 0.0000 0.0000
outcome*center 2 2 0 0.0000 0.0000 0.0000 0.0000
outcome*center 2 3 0 0.0000 0.0000 0.0000 0.0000
outcome*center 2 4 0 0.0000 0.0000 0.0000 0.0000
outcome*center 2 5 0 0.0000 0.0000 0.0000 0.0000

*** outcome by center for centers 1 and 3 not estimated
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Limitations

• We have forced the outcomes of treatment by center to be zero for sites 1 and 3

• This is technically not correct (Sites 1 and 3 could have a success in repeated
sampling)

• However, we have constrained them to be zero to make the model converge

• We estimate the Common OR of treatment and outcome to be

exp(1.4696) = 4.34

• This result is consistent with other results (CMH, Logistic, and log-linear with Sites 1 &
3 eliminated)

• The synergy of these different methods suggests that the treatment is beneficial in
reducing the fungal infection
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