Lecture 24: Log-linear Models -Sparse Tables

Dipankar Bandyopadhyay, Ph.D.

BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina

Sparse Tables

- Consider an arbitrary contingency table
- We could have a table that cross classifies students in BMTRY 711 for an arbitrary year on
 - 1. Race: White, black, and other
 - 2. Gender: Male and female
 - 3. Year: 1^{st} , 2^{nd} , and other
- In theory, all combinations are possible
- But in practice some combinations are unobserved
- What do the "zero" cells say about the relationship of race, gender and year?

Sampling Zeros

- In our example (or current class),
- We have no White Males of any year
- However, "in theory" we would expect some in a given year
- That is, P(white male in 1^{st} year) > 0 or

 μ white male in 1^{st} year > 0

• When we would expect some observations in the *ikj* cell but fail to sample any, we have **sampling zeros**

• In some cases,

$$\mu_{ijk} = 0$$

- or the probability of observing a specific combination is zero
- When $\mu_* = 0$ for a specific cell in the table, we have a structural zero
- For example, in an oncology study that enrolls a cohort of individuals, you would expect lung cancer in males and females; however, prostate cancer can biologically occur only in males.
- Thus, a marginal table summed across all other factors could yield a similar table

	Cancer Type			
	Lung	Prostate	Ovarian	Other
Male	$\mu > 0$	$\mu > 0$	n/a	$\mu > 0$
Female	$\mu > 0$	n/a	$\mu > 0$	$\mu > 0$

• "n/a" is used here to distinguish a sampling zero from a structural zero

A lot about nothing

- With sampling zeros, a larger (or different) sample may allow for observed values where the present structural zeros may exists
- Note that **0** is a valid Poisson response with probability $\exp(\mu_*)$
- As such, it contributes to the likelihood function
- However, no matter how large the sample, structural zeros will always remain
- Thus, we have constraints that $\mu_* = \widehat{\mu_*} = n_* = 0$
- Contingency tables with structural tables are called **incomplete tables**
- We need to take the constraints into account when estimating the model parameters

Sparse Tables and effects on G^2

- A small sample size (and hence a sparse table) affect the asymptotic convergence of chi-square based tests
- If the total sample size (n) divided by the total number of cells (N) is less than 5 (n/N < 5), then the chi-square approximation of G^2 is generally poor
- Pearson's X^2 may perform better, but a guideline generally isn't accepted
- In the context of log-linear models, the delta-deviance (or delta- G^2) with small degrees of freedom generally are better approximated by a chi-square distribution

Solutions to sampling zeros

- In the 2×2 table we discussed at the start of the semester add .5 to all of the cells
- It was discussed (but not proven) that this actually produces less bias than the "unadjusted" odds ratio
- For a generalized table, this approach may not always be your best bet
- For example, in a table with N = 30 cells, adding 1/2 to each of these cells may in fact add too much data to the table
- One approach that is generally recommended is to perform **sensitivity analyses** to check the robustness of the results

Example

- Consider a multicenter clinical trial in with subjects are randomized to either Active drug or placebo for the treatment of fungal infections.
- A binary response of a "success" "or failure" is recorded for each subject

		Response	
Center	Тx	Success	Failure
1	А	0	5
	Ρ	0	9
2	А	1	12
	Ρ	0	10
3	А	0	7
	Ρ	0	5
4	А	6	3
	Ρ	2	6
5	А	5	9
	Ρ	2	12

• Note all of the zeros.

```
options nocenter;
data one;
 input center tx $ success fail;
count = success;
outcome = 1;
output;
count=fail;
outcome = 2i
output;
drop success fail;
 cards;
   А
       0
           5
1
           9
1
   Ρ
       0
2
   A 1 12
2
   Р
       0 10
3
           7
   А
       0
3
           5
   Ρ
       0
   A 6 3
4
   P 2 6
4
   A 5 9
5
5
       2
           12
   Ρ
;
run;
```

Proc Logistic

Odds Ratio Estimates

				Point	95% Wald				
Effect				Estimate	Confide	ence Limits			
center	1	vs	5	<0.001	<0.001	>999.999			
center	2	vs	5	0.113	0.012	1.041			
center	3	vs	5	<0.001	<0.001	>999.999			
center	4	vs	5	2.895	0.733	11.442			
tx	А	vs	Ρ	4.693	1.186	18.564			

Proc GENMOD

```
proc genmod data=one;
  class center tx outcome;
  model count = center|tx|outcome@2 /dist=poi link=log;
  run;
```

FROM LOG:

- WARNING: The negative of the Hessian is not positive definite. The convergence is questionable.
- WARNING: The procedure is continuing but the validity of the model fit is questionable.
- WARNING: The specified model did not converge.
- WARNING: Negative of Hessian not positive definite.

Parameter			DF	Estimate	Error	Lin	nits	
**** Something	fishy?*******							
center*outcome	1	1	1	-25.4133	159175.4	-312004	311952.7	
center*outcome	1	2	0	0.0000	0.0000	0.0000	0.0000	
center*outcome	2	1	1	-2.1802	1.1327	-4.4003	0.0399	
center*outcome	2	2	0	0.0000	0.0000	0.0000	0.0000	
center*outcome	3	1	1	-25.3866	145462.6	-285127	285076.1	

Deleting sites

- Clinics 1 and 3 only have failures
- Thus, they do not affect the OR of treatment by success
- One solution to the convergence problems is to model the data without sites 1 and 3

```
proc logistic data=one;
where center in (2,4,5);
freq count;
class center tx /param=ref;
model outcome(ref='2') = center tx;
run;
```

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Odds Ratio Estimates

				Point	95%	95% Wald			
Effect				Estimate	Confider	nce Limits			
center	2	vs	5	0.113	0.012	1.041			
center	4	vs	5	2.895	0.733	11.442			
tx	А	vs	Ρ	4.693	1.186	18.564			

Note: This OR for the treatment is the same for the model with 5 sites

CMH Estimator

```
proc freq data=one;
  tables center*tx*outcome / cmh;
  weight count;
run;
proc freq data=one;
  where center in (2,4,5);
tables center*tx*outcome / cmh;
  weight count;
run;
```

That is, sites with only one type of response do not contribute to the OR estimate

Dropping sites 1 and 3 also make the loglinear model converge

```
proc genmod data=one;
where center in (2,4,5);
class center tx outcome;
model count = center|tx|outcome@2 /dist=poi link=log type3;
run;
```

LR Statistics For Type 3 Analysis

		Chi-	
Source	DF	Square	Pr > ChiSq
center	2	4.76	0.0926
tx	1	2.86	0.0911
center*tx	2	1.44	0.4860
outcome	1	22.57	<.0001
center*outcome	2	12.20	0.0022
tx*outcome	1	5.49	0.0192

However, this model (the homogeneous association model) is the same as a logistic regression model

				Analysi	s Of Paramet	ter Estimate	28
					Standard	Wald 95%	Confidence
Parameter			DF	Estimate	Error	L	imits
Intercept			1	2.5148	0.2785	1.9689	3.0606
center	2		1	-0.2270	0.4206	-1.0513	0.5973
center	4		1	-0.7597	0.4722	-1.6852	0.1658
center	5		0	0.0000	0.0000	0.0000	0.0000
tx	А		1	-0.3588	0.4208	-1.1834	0.4659
tx	Ρ		0	0.000	0.0000	0.0000	0.0000
outcome	1		1	-2.0223	0.6700	-3.3354	-0.7092
outcome	2		0	0.000	0.0000	0.0000	0.0000
tx*outcome	А	1	1	1.5460	0.7017	0.1708	2.9212
(the common odds	rat	io	of t	k with outc	ome exp(1.5	460) = 4.69)
center*outcome	2	1	1	-2.1802	1.1327	-4.4003	0.0399
center*outcome	4	1	1	1.0631	0.7011	-0.3110	2.4373
center*tx	2	A	1	0.5682	0.5938	-0.5956	1.7319
center*tx	4	A	1	-0.2280	0.6771	-1.5550	1.0990

Structural Zeros

- By default, if you have data with a zero count in GENMOD, it will be considered a sampling zero
- By default, PROC CATMOD will consider it a structural zero
- To make GENMOD consider the zeros as structural, delete the observations with zero
- To make CATMOD consider the zeros as sampling, add a small weight (like the .5 approach, but much smaller like 10-6) to the count
- As stated before, I tend to use GENMOD more than CATMOD

```
data two;
set one;
if count = 0 then delete;
run;
proc genmod data=two;
class tx outcome center;
model count = tx|outcome|center@2 /link=log dist=poi type3;
run;
```

Analysis Of Parameter Estimates						5	
					Standard	Wald 95% (Confidence
Parameter			DF	Estimate	Error	Lit	nits
Intercept			1	2.5084	0.2796	1.9604	3.0565
tx	A		1	-0.3435	0.4213	-1.1692	0.4822
tx	P		0	0.0000	0.0000	0.0000	0.0000
outcome	1		1	-1.9695	0.6710	-3.2847	-0.6543
outcome	2		0	0.0000	0.0000	0.0000	0.0000
tx*outcome	A	1	1	1.4696	0.7164	0.0654	2.8738
tx*outcome	A	2	0	0.0000	0.0000	0.0000	0.0000
tx*outcome	P	1	0	0.0000	0.0000	0.0000	0.0000
tx*outcome	P	2	0	0.0000	0.0000	0.0000	0.0000
center	1		1	-0.3112	0.4351	-1.1640	0.5415
center	2		1	-0.2059	0.4221	-1.0332	0.6215
center	3		1	-0.8990	0.5274	-1.9327	0.1347
center	4		1	-0.7655	0.4738	-1.6941	0.1632
center	5		0	0.0000	0.0000	0.0000	0.0000

With Structural Zeros (model converged)

Parameter				DF	Estimate	Standard Error	Wald 95% Co Limi	onfidence ts
tx*center	A	1		1	-0.2443	0.6990	-1.6143	1.1257
tx*center	А	2		1	0.5258	0.6007	-0.6515	1.7031
tx*center	А	3		1	0.6800	0.7213	-0.7338	2.0938
tx*center	А	4		1	-0.2098	0.6738	-1.5305	1.1108
tx*center	А	5		0	0.0000	0.0000	0.0000	0.0000
tx*center	Ρ	1		0	0.0000	0.0000	0.0000	0.0000
tx*center	Ρ	2		0	0.0000	0.0000	0.0000	0.0000
tx*center	Ρ	3		0	0.0000	0.0000	0.0000	0.0000
tx*center	Ρ	4		0	0.0000	0.0000	0.0000	0.0000
tx*center	Ρ	5		0	0.0000	0.0000	0.0000	0.0000
outcome*center	1	2	*	1	-1.9850	1.1586	-4.2559	0.2859
outcome*center	1	4	*	1	1.0533	0.6968	-0.3124	2.4190
outcome*center	1	5	*	0	0.0000	0.0000	0.0000	0.0000
outcome*center	2	1		0	0.0000	0.0000	0.0000	0.0000
outcome*center	2	2		0	0.0000	0.0000	0.0000	0.0000
outcome*center	2	3		0	0.0000	0.0000	0.0000	0.0000
outcome*center	2	4		0	0.0000	0.0000	0.0000	0.0000
outcome*center	2	5		0	0.0000	0.0000	0.0000	0.0000

*** outcome by center for centers 1 and 3 not estimated

Limitations

- We have forced the outcomes of treatment by center to be zero for sites 1 and 3
- This is technically not correct (Sites 1 and 3 could have a success in repeated sampling)
- However, we have constrained them to be zero to make the model converge
- We estimate the Common OR of treatment and outcome to be

 $\exp(1.4696) = 4.34$

- This result is consistent with other results (CMH, Logistic, and log-linear with Sites 1 & 3 eliminated)
- The synergy of these different methods suggests that the treatment is beneficial in reducing the fungal infection