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TABLES IN 3 DIMENSIONS

• With 3 or more discrete variables, we can form a ‘multidimensional contingency table’

• The variables could all be random, or some margins could be fixed by design.

• As a motivation, consider the table below, where 725 births are cross classified by
clinic (W ), prenatal care (X), and outcome (Y ).

• Only the total sample size was fixed (prevalence study), although the CLINIC and
AMOUNT OF CARE preceded OUTCOME in time.

AMOUNT OF OUTCOME (Y )

CLINIC (W ) CARE (X) died lived

1 less 3 176
more 4 293

2 less 17 197
more 2 23
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Partial Tables

• Recall, the (2 × 2) tables of (X, Y ) at each level of W are called PARTIAL or
CONDITIONAL tables

• We are interested in the relationship between AMOUNT OF CARE and OUTCOME
controlling for CLINIC.

Clinic 1 Clinic 2

AMOUNT OF OUTCOME (Y )

CARE (X) died lived

less 3 176
more 4 293

AMOUNT OF OUTCOME (Y )

CARE (X) died lived

less 17 197
more 2 23
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• The (CARE,OUTCOME) table formed by combining (or collapsing over) the partial
tables is called the MARGINAL table

AMOUNT OF OUTCOME (Y )

CARE (X) died lived

less 20 373
more 6 316

• For the partial and marginal tables, we can define partial and marginal odds ratios:

1. Partial Odds Ratio: odds ratios in each partial table

2. Marginal Odds Ratio: odds ratios in marginal table
(i.e., collapsed over the third variable)

• We need to try to answer the question if it is okay to collapse the table over CENTER
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proc freq;
tables clinic*care outcome*clinic*care

clinic*outcome care*clinic*outcome
care*outcome clinic*care*outcome/measures;

weight count;
run;

Marginal and partial odds ratios for CLINIC, CARE, and OUTCOME
Association (CLINIC,CARE) (CLINIC,OUTCOME) (CARE,OUTCOME)
----------- ------------- ---------------- --------------

MARGINAL 0.070* 0.173* 2.824*

PARTIAL 1 0.088* 0.198* 1.249

2 0.070* 0.157* 0.992

------------------------------------------------------------------

* p < .05 for OR=1
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• The marginal and partial odds ratios for
(CLINIC,CARE)
are similar,

• The marginal and partial odds ratios for
(CLINIC,OUTCOME)
are similar,

• On the other hand, we see that the marginal odds ratio for (CARE,OUTCOME) is 2.8,
meaning

The odds of death is 2.8 greater for less care than more care

• However, controlling for the clinic, CARE and OUTCOME appear to be independent
(partial OR’s about 1, and non-significant).

Association (CARE,OUTCOME)
----------- --------------
MARGINAL 2.824*

PARTIAL 1 1.249
(CLINIC)

2 0.992
-----------------------------

* p < .05 for OR=1
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Confounding

• When the partial and marginal associations are different, there is said to be
CONFOUNDING:

• Confounding occurs when two variables are associated with a third in a way to obscure
their relationship.

• In particular, W (CLINIC) can confound the relationship between X (CARE) and Y

(OUTCOME) when W is related to both X and Y .

• In the above, table, we see that CLINIC (W ) is related to CARE (X)

(partial,marginal OR = 0.070)

and CLINIC (W ) is related to OUTCOME (Y )

(partial,marginal OR = 0.173).
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The CLINIC (W ) and CARE(X) relationship

| care
clinic | 1 2 | Total

-----------+----------------------+----------
1 | 179 297 | 476

| 37.61 62.39 | 100.00
-----------+----------------------+----------

2 | 214 25 | 239
| 89.54 10.46 | 100.00

-----------+----------------------+----------
Total | 393 322 | 715

| 54.97 45.03 | 100.00

• The marginal and partial OR ≈ 0.070.

• The OR is not 1 because, for clinic 1, a majority of infants received prenatal care
(62%), regardless of outcome, whereas, in clinic 2, only about 10% of the infants
received prenatal care.
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The CLINIC (W ) and OUTCOME(Y ) relationship

| outcome
clinic | 1 2 | Total

-----------+----------------------+----------
1 | 7 469 | 476

| 1.47 98.53 | 100.00
-----------+----------------------+----------

2 | 19 220 | 239
| 7.95 92.05 | 100.00

-----------+----------------------+----------
Total | 26 689 | 715

| 3.64 96.36 | 100.00

• The marginal and partial OR ≈ 0.2

• There is another important difference between the 2 clinics; the outcome differs by
clinic; the death rate in clinic 1 is 1.5%, and, in clinic 2, it is 8%.

• Thus, infants in clinic 2 tend to receive ‘less’ prenatal care, and infants in clinic 2 tend
to die more.

• Because the death rates differ by clinic, and the amount of care differs by clinic, it
appears, when just looking at CARE (X) and OUTCOME (Y ), as if infants who get
less prenatal care tend to die more
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• In particular, the marginal OR between CARE (X) and OUTCOME (Y ) is 2.8

• However, within clinic, there appears to be no relationship between CARE and
OUTCOME. The partial OR ≈ 1

• From the above example, we see that CARE (X) and OUTCOME (Y ) are marginally
associated, but, conditional on CLINIC (W ), they appear to be independent.

Lecture 23: Log-linear Models for Multidimensional Contingency Tables – p. 10/56



Three Discrete Variables

• As we have seen, with three variables, relationships can get more complicated than
just two.

• Suppose we have three discrete variables:
1. W has J levels
2. X has K levels
3. Y has L levels

• We will restrict ourselves to J = K = L = 2

• In the above example, only the total sample size was fixed. We will assume the joint
distribution of the three variables is multinomial with only the total sample size fixed.
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• Let

Yjkℓ = number of subjects with
W = j, X = k, Y = ℓ

• Only the total sample size n = Y+++ is fixed.

• Again, we will denote the expected value by

µjkℓ = E[Yjkℓ]

• And in the context of the multinomial, let

πjkℓ = P (W = j, X = k, Y = ℓ)

Lecture 23: Log-linear Models for Multidimensional Contingency Tables – p. 12/56



4 types of independence

• To explore the associations of W, X, and Y , we need to consider the following types of
independence
1. Mutual independence
2. Joint independence
3. Marginal independence

4. Conditional independence
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Definitions

• Mutual Independence:Three variables (X, Y and W) are considered mutually
independent if

πjkℓ = πj++π+k+π++ℓ

for all j, k and ℓ

• Joint Independence: Variable Y is jointly independent of X and W when

πjkℓ = πjk+π++ℓ

for all j, k and ℓ

• Which is the same as

P (W = j, X = k, Y = ℓ) = P (W = j, X = k)P (Y = ℓ)

• Note that Mutual independence implies joint independence (if mutually indep,
πj++π+k+ = πjk+)
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• Marginally independence: Variables X and Y are marginally independent if

π+kℓ = π+k+π++ℓ

for all k and ℓ.

• Note: If X and Y are marginally independent, then when the “cube” is collapsed over
W , the ORXY = 1

• and that if Y is jointly indep. of X and W , then X and Y and Y and Z are marginally
independent since

πjkℓ = πjk+π++ℓ(joint indep.)
Sum both sides over W

π+kℓ =
P

j
πjk+π++ℓ

= π++ℓπ+k+

which is marginal indep. of Y and X

• Thus Joint indep. implies Marginal indep.
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• Conditional independence: Variables X and Y are conditionally independent, given
W when independence holds for each partial table within which Z is fixed. Specifically,

πkℓ|j = P (X = k, Y = ℓ|Z = k) = πk+|jπ+ℓ|j

• Or, for the joint probability

πjkℓ =
π+k+π++ℓ

πj++

• Recall, conditional indep. does NOT imply marginal indep.

• These definitions are associated with specific log-linear models

• The definitions can also be viewed in the context of ORs.
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• The marginal odds ratio for (X, Y ) can be written as

ORXY =
P [(X=1),(Y =1)]P [(X=2),(Y =2)]
P [(X=2),(Y =1)]P [(X=1),(Y =2)]

=
[µ+11/µ+++][[µ+22/µ+++]

[µ+21/µ+++][[µ+12/µ+++]

=
µ+11µ+22

µ+21µ+12

• If
ORXY = 1,

then X and Y are said to be marginally independent.
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• The partial odds ratio for (X, Y ) given W = j can be written as

ORXY.W
j =

P [(X=1),(Y =1)|W=j]P [(X=2),(Y =2)|W=j]
P [(X=2),(Y =1)|W=j]P [(X=1),(Y =2)|W=j]

=
[µj11/µj++][[µj22/µj++]

[µj21/µj++][[µj12/µj++]

=
µj11µj22

µj21µj12

• If
ORXY.W

j = 1,

for all j, then X and Y are said to be conditionally independent given W.
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• Now, W confounds the relationship between X and Y if

marginal OR 6= partial OR

ORXY 6= ORXY.W
j .

• If
ORXY = ORXY.W

j ,

for j = 1, 2, then there is no confounding.

• In particular, for W to confound the relationship between X and Y, W must be partially
related to both X and Y , i.e.,

ORWX.Y
ℓ 6= 1

and
ORWY.X

k 6= 1
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• Alternatively, if either

• 1. W and X are conditionally independent given Y, i.e.

ORWX.Y
ℓ = 1

or

• 2. W and Y are conditionally independent given X, i.e.

ORWY.X
k = 1

then W cannot be a confounder.

• Because of the simplicity of looking at a single (2 × 2) table to study the relationship
between X and Y instead of having to look in each partial table given W , it is
important to know when W is not a confounder, so that we can ‘collapse’ over W to
study the relationship between X and Y in a simplified manner.
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Log-linear model approach

• Tables in three dimensions are a generalization of the (2 × 2) table introduced in the
last lecture

• These conditional log-odds ratios correspond to interactions in the following general
‘saturated’ three-way log-linear model:

log(µjkℓ) =

µ + λW
j + λX

k + λY
ℓ + λWX

jk + λWY
jℓ + λXY

kℓ + λWXY
jkℓ ,
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Identifiability Constraints

We again place the constraints that we set to 0 any parameter with any subscript=2:

λW
2 = λX

2 = λY
2 = 0

λWX
12 = λWX

21 = λWX
22 = 0

λWY
12 = λWY

21 = λWY
22 = 0

λXY
12 = λXY

21 = λXY
22 = 0

λWXY
jkℓ = 0 unless jkℓ = 111
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Expected cell counts

log(µ111) = µ +λW
1 + +λX

1 +λY
1 +λWX

11 +λWY
11 +λXY

11 +λWXY
111

log(µ121) = µ +λW
1 + +λY

1 +λWY
11

log(µ211) = µ +λX
1 +λY

1 +λXY
11

log(µ221) = µ +λY
1

log(µ112) = µ +λW
1 + +λX

1 +λWX
11

log(µ122) = µ +λW
1 +

log(µ212) = µ +λX
1

log(µ222) = µ
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Matrix Notation

• If we let:
~µ = [µ111, µ121, µ211, µ221, µ112, µ122, µ212, µ222]′ ;

be the vector of expected cell counts, and

β = [µ, λW
1 , λX

1 , λY
1 , λWX

11 , λWY
11 , λXY

11 , λWXY
111 ]′ ;
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• With a design matrix of

X =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 1 1 1 1 1 1 1

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

1 0 0 1 0 0 0 0

1 1 1 0 1 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

5

• Then you sometimes see the log-linear model written as::

log(µ) = Xβ
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Partial OR’s

• Recall,

Yjkℓ = number of subjects with
W = j, X = k, Y = ℓ

and that

µwkℓ = eµeλW

eλX

eλY

eλW X

eλW Y

eλXY

eλW XY

• So,

• Going thru the algebra, you can show that the partial odds ratios for X and Y given W

are are

(ORXY.W
1 ) =

µ111µ122

µ121µ112
= exp[λXY

11 + λWXY
111 ]

and

(ORXY.W
2 ) =

µ211µ222

µ221µ212
= exp[λXY

11 ].
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• Here, the conditional OR between X and Y depends on the level of W = j.

• Because of this, we do not even worry about collapsing (confounding) since the partial
associations are different for different levels of W = j.

• You can also show that the marginal odds ratios do not equal the partial odds ratios.
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• In the most general (saturated) log-linear model, the partial odds ratios are not equal
because there is a three-way interaction between the three variables.

• When the three way interaction does not equal 0, i.e.,

λWXY
111 6= 0

then the model cannot be reduced.

• Note that

log(ORXY.W
2 ) = log

„

µ211µ222

µ221µ212

«

= λXY
11

and

log(ORXY.W
1 ) = log

„

µ111µ122

µ121µ112

«

= λXY
11 + λWXY

111 .
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• Substituting the first equation λXY
11 = log(ORXY.W

2 ) in the second, we have

log(ORXY.W
1 ) = log(ORXY.W

2 ) + λWXY
111

or, equivalently,

λWXY
111 = log(ORXY.W

1 ) − log(ORXY.W
2 )

= log
“

µ111µ122

µ121µ112

”

− log
“

µ211µ222

µ221µ212

”

• That is λWXY
111 is the difference in the partial ORs

• If the difference is zero, then the partial ORs are alike
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• You can also show that we can write λWXY
111 as

λWXY
111 = log(ORWX.Y

1 ) − log(ORWX.Y
2 )

and
λWXY
111 = log(ORWY.X

1 ) − log(ORWY.X
2 )

• In particular, if we look at the log-odds ratios between two of the variables for the two
levels of the third variable, the three-way interaction measures the difference in these
two log odds ratios.
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Hierarchical log-linear models

• Now, we will discuss ‘hierarchical models’, in which we drop interactions out of the
model.

• Hierarchical means that, if a two-way interaction is in a model, then the 2 main effects
corresponding to that interaction must be in the model; if the λWX

jk is in the model,

then λW
j must be in the model, as well as λX

k .

• If the three way interaction is in, all 2-ways and main effects must be in.

Lecture 23: Log-linear Models for Multidimensional Contingency Tables – p. 31/56



Pairwise interaction log-linear model

• If
λWXY
111 = 0

in the saturated log-linear model, then the model is reduced to a ‘pairwise log-linear
model’,

log(µjkℓ) =

µ + λW
j + λX

k + λY
ℓ + λWX

jk + λWY
jℓ + λXY

kℓ

• What does this imply about the conditional OR’s?
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• Recall, in the saturated log-linear model,

(ORXY.W
2 ) = exp[λXY

11 ]

and
(ORXY.W

1 ) = exp[λXY
11 + λWXY

111 ].

• If
λWXY
111 = 0,

then
ORXY.W

1 = exp[λXY
11 ] = ORXY.W

2 ,

and there is a common OR between X and Y given W.

• This model says that there is a common odds ratio for two variables given a level of the
third.
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• The other conditional odds ratios are:

ORWX.Y
1 = exp[λWX

11 ] = ORWX.Y
2 ,

and
ORWY.X

1 = exp[λWY
11 ] = ORWY.X

2 ,

• Note, if two variables are conditionally independent given a third variable, then the
conditional OR = 1 (or log-OR = 0).

• If W and X are conditionally independent given Y , then

log[ORWX.Y
1 ] = λWX

11 = 0.

• If W and Y are conditionally independent given X, then

log[ORWY.X
1 ] = λWY

11 = 0.

• If X and Y are conditionally independent given W , then

log[ORXY.W
1 ] = λXY

11 = 0.
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• Thus, when there is conditional independence between two variables:
in a pairwise log-linear model, the interaction term between the two variables equals 0.
Confounding in Pairwise Model

• Here, we discuss what conditions are necessary for there to be no confounding in the
pairwise log-linear model.

• When we discussed confounding, we said that W does not confound the relationship
between X and Y if

• 1. W and X are conditionally independent given Y

or

• 2. W and Y are conditionally independent given X

• Again, in terms of the pairwise log-linear model, conditional independence is
expressed in terms of the pairwise interaction terms being 0.
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• Then, if we look at the pairwise log-linear model, if W does not to confound the
relationship between X and Y, then either

• 1. W and X are conditionally independent given Y

(λXW
11 = 0), or

• 2. W and Y are conditionally independent given X

(λXY
11 = 0).

• In general, if you look at the pairwise log-linear model (assuming or testing that there is
no 3-way interaction), and you want to see if one variable (say W ) confounds the
relationship between the other two variables (say, X and Y ), you need to look at the
pairwise interactions between W and each of the other two variables.

• (** Key Result **) If the estimated pairwise interactions between W and one of the
other two variables is not significantly different from 0, then you can say that W does
not appear to be a confounder, and you can collapse over W to study the relationship
between X and Y.

• The nice thing about the log-linear model is that it allows you to look at all three
conditional log-odds ratios at once to see if any one of the three variables confounds
the relationship between the other two.
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The Conditional Independence log-linear model

• Suppose we look at the pairwise log-linear model.

• If, say, X and W are conditionally independent given Y, then

log[ORWX.Y
ℓ ] = λWX

11 = 0,

and

log(µjkℓ) =

µ + λW
j + λX

k + λY
ℓ + λWY

jℓ + λXY
kℓ

• This log-linear model is often called the ‘conditional independence’ log-linear model.
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Other relationships for 3 variables

Joint Independence

• Suppose W is independent of (X, Y ),

P [(X = k), (Y = ℓ), (W = j)] =

P [(X = k), (Y = ℓ)]P (W = j)

• Since (X, Y ) is completely independent of W , to study the relationship between X

and Y , we can ignore W (collapse over W ).

• Since W is independent of (X, Y ), any odds ratio (partial or marginal) involving W

and one of (X, Y ), equals 1:

ORWX = ORWX.Y
ℓ = 1

and
ORWY = ORWY.X

k = 1
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• In the pairwise log-linear model, this means that

log[ORWX.Y
ℓ ] = λWX

11 = 0

and
log[ORWY.X

k ] = λWY
11 = 0

i.e., any pairwise interaction terms involving W equal 0.

• Then, the log-linear model corresponding to joint independence is

log(µjkℓ) =

µ + λW
j + λX

k + λY
ℓ + λXY

kℓ
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Mutual Independence

• If there is mutual independence, then

P [(W = j), (X = k), (Y = ℓ)] =

P (W = j)P (X = k)P (Y = ℓ)

• Since all variables are mutually independent you can show that all partial and marginal
odds ratios equal 1.

• We can write a log-linear model for mutual independence as a ‘main effects’ model:

log(µjkℓ) = µ + λW
j + λX

k + λY
ℓ
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Possible Models

• Unlike the (2 × 2) table, there may be many models of interest.

• When writing out a log-linear model in shorthand notation, we usually write down the
highest order interactions down, with commas between them, i.e.,

SYMBOL INTERACTION TERMS IN THE MODEL

(W, X, Y ) Main effects (Mutual Independence)
(WX, Y ) λWX

11 (Y indep of WX)
(WY, X) λWY

11 (X indep of WY)
(W, XY ) λXY

11 (W indep of XY)
(WX, WY ) λWX

11 , λWY
11 (XY cond indep given W)

(WX, XY ) λWX
11 , λXY

11 (WY cond indep given X)
(WY, XY ) λWY

11 , λXY
11 (WX cond indep given Y)

(WX, WY, XY ) λWX
11 , λWY

11 , λXY
11 (Homogenous association)

(WXY ) λXWZ
111

• We will only look hierarchical models, if an interaction is present, so are the main
effects.

• Use the Deviance to test hypotheses related to setting model parameters equal to zero.
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Example

The Birth Outcome Data

AMOUNT OF OUTCOME (Y )

CLINIC (W ) CARE (X) died lived TOTAL

1 less 3 176 179
more 4 293 297

2 less 17 197 214
more 2 23 25

• Since there are many log-linear models, we would like to see which one ‘fits’ the best.
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Goodness-of-fit

Deviance DF P-value

Null (intercept only)
µ 1066.43 7 0.000

Mutual Indepdendence
(CLI,CA,OUT) 211.48 4 0.000

Joint Independence
(CLI*CA,OUT) 17.83 3 0.000
(CLI*OUT,CA) 193.74 3 0.000
(CLI,CA*OUT) 205.87 3 0.000

Note: These models do not appear to fit the data
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Conditional Independence
(CLI*CA,CLI*OUT) 0.08 2 0.960 **
(CLI*CA,CA*OUT) 12.22 2 0.002
(CLI*OUT,CA*OUT) 188.12 2 0.000

Pairwise Model (Homogenous Association)
(CLI*CA,CLI*OUT,CA*OUT) 0.04 1 0.835 **

Saturated Model
(CLI*CA*OUT) – –

** These models appear to fit the data
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• Only the total (y+++) was fixed by design, so all parameters, except possibly µ are
relevant.

• Looking at the Goodness-of-fit statistics D2, we see that the most parsimonious model
(fewest parameters) that fits well is the model

(WX, WY ) = (CLI ∗ CA, CLI ∗ OUT ),

log(µjkℓ) =

µ + λW
j + λX

k + λY
ℓ + λWX

jℓ + λWY
jℓ

where clinic is W, prenatal care is X, and outcome is Y .
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• In particular, since

λXY
kℓ = 0,

this model says that CARE (X) and OUTCOME (Y ) are conditionally independent
given CLINIC (W ), which is what we noticed from the table of observed marginal and
partial odds ratios.

Association (CARE,OUTCOME)
----------- --------------
MARGINAL 2.824*

PARTIAL 1 1.249
(CLINIC)

2 0.992
-----------------------------

* p < .05 for OR=1
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Model Building (Backwards Selection)

• To “build” a log-linear model for a contingency table, you actually “break” it

• In general, the first thing you would probably do is test for no 3-way interaction, which
is also the goodness-of-fit D2 from the pairwise interaction model,

D2(CLI ∗ CA, CLI ∗ OUT, CA ∗ OUT ) = .04,

df = 1 p = 0.8349

• Which if we looked at the parameter estimates (Wald test) we would see

---------------------------------------------------
| Coef. Std. Err. z P>|z|

---------------------------------------------------
three way interaction term

| .2296495 1.095357 0.210 0.834
---------------------------------------------------

• Which is almost identical (Z2 = (.210)2 = 0.0441) to the likelihood ratio.
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Pairwise Interaction Model

• Given that the three-way interaction appears to be 0, we may next want to look at the
pairwise interaction model, which fits the data well (it’s goodness-of-fit statistic is the
same as the test for no 3-way interaction),

D2(CLI ∗ CA, CLI ∗ OUT, CA ∗ OUT ) = .04

• Suppose we look closer at the pairwise interaction model:

---------------------------------------------------
count | Coef. Std. Err. z P>|z|

---------+-----------------------------------------
clinic | 2.535952 .2117207 11.978 0.000

care | 2.138672 .2153284 9.932 0.000
out | -2.54849 .5606234 -4.546 0.000

cl_ca | -2.646662 .2338735 -11.317 0.000
cl_out | -1.699109 .530662 -3.202 0.001
ca_out | .1103763 .5610154 0.197 0.844
_cons | 3.143583 .2040914 15.403 0.000

---------------------------------------------------

• The only non-significant term in this model is the CARE*OUTCOME interaction, λXY
kℓ ,

which, as we said above, means that CARE (X) and OUTCOME (Y ) are independent
given CLINIC (W ).
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• We can also see this by looking at the likelihood ratio statistic, which can be calculated
with the change in D2’s:

D2(CLI ∗ CA, CLI ∗ OUT ) − D2(CLI ∗ CA, CLI ∗ OUT, CA ∗ OUT )

= 0.083 − .043 = .04

df = 1 p = 0.84

• When looking at this model, we also see that we cannot collapse over CLINIC (W ) to
study the relationship between CARE and OUTCOME since CLINIC appears to be
conditionally related to both CARE and OUTCOME:
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• 1. CLINIC appears to be conditionally related to CARE given OUTCOME, i.e., the
CLINIC*CARE OR, given OUTCOME is significant when testing the test for

H0 : λWX
jk = 0

is rejected since

------------------------------------------------------
| Coef. Std. Err. z P>|z|

------------------------------------------------------
clinic
by care | -2.646662 .2338735 -11.317 0.000

------------------------------------------------------

Lecture 23: Log-linear Models for Multidimensional Contingency Tables – p. 50/56



• 2. Since CLINIC appears to be conditionally related to OUTCOME given CARE, i.e.,
the CLINIC*OUTCOME OR, given CARE is significant when testing the test for

H0 : λWY
jℓ = 0

is rejected since

---------------------------------------------------------
| Coef. Std. Err. z P>|z|

---------------------------------------------------------
clinic
by outcome | -1.699109 .530662 -3.202 0.001

---------------------------------------------------------
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• This confounding was also seen in the table of observed odds ratios:

Association (CARE,OUTCOME)
----------- --------------
MARGINAL 2.824*

PARTIAL 1 1.249
(CLINIC)

2 0.992
-----------------------------

* p < .05 for OR=1
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Final Model

• Thus, the best fitting model deletes the

CARE ∗ OUTCOME

interaction from the pairwise log-linear model, i.e., the conditional independence
log-linear model between CARE and OUTCOME:

---------------------------------------------------
count | Coef. Std. Err. z P>|z|

---------+-----------------------------------------
clinic | 2.542877 .2091882 12.156 0.000

care | 2.1471 .2113597 10.159 0.000
out | -2.449189 .2391172 -10.243 0.000

cl_ca | -2.653446 .231574 -11.458 0.000
cl_out | -1.755504 .4496291 -3.904 0.000
_cons | 3.13604 .2009014 15.610 0.000

---------------------------------------------------
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• It may be of interest to look at the other conditional odds ratios for this data.

• For example, the Health Safety Board may want to determine if the clinics are different
with respect to care and outcome, and may use this information to decide that some
action may be needed to upgrade one of them.

• From this model, the estimate of the conditional odds ratio between CLINIC and CARE
is

exp(−2.653446) = .0704

with 95% confidence interval

[exp(-2.653446-1.96*.231574),exp(-2.653446+1.96*.231574)]
[exp(-3.1073),exp(-2.1996)] = [ .0447,.1109]

• That is, the odds of receiving less care at clinic 1 are 93% less than the odds of
receiving less care at clinic 2 when controlled for the effects of the birth outcome. (i.e.,
more likely to receive less care at clinic 2)
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• From this model, the estimate of the conditional odds ratio between CLINIC and
OUTCOME is

exp(−1.755504) = .173

with 95% confidence interval

[exp(-2.6368), exp(-.87425)] = [.0716,.4172]

• That is, the odds of dying at clinic 1 are 83% less than the odds of dying at clinic 2
when controlled for the level of care.
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Notes about results

• Results are from STATA

• A data file with all interactions and appropriate dummy codes was created (2’s were
set to zero)

• To model in STATA you need to just specify at the “dot”

. poisson {outcome} {covariates}

or more specifically
. poisson count clinic care outcome cl_ca cl_out ca_out cl_ca_out

• You can use PROC GENMOD if you would like (and use the CLASS statement)

• The STATA data file and SAS program (with data) are posted on the website.
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