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Log-linear Models

• Log-linear models are a Generalized Linear Model

• A common use of a log-linear model is to model the cell counts of a contingency table

• The systematic component of the model describe how the expected cell counts vary as
a result of the explanatory variables

• Since the response of a log linear model is the cell count, no measured variables are
considered the response
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Recap from Previous Lectures

• Lets suppose that we have an I × J × Z contingency table.

• That is, There are I rows, J columns and Z layers.

(picture of cube)
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Conditional Independence

We want to explore the concepts of independence using a log-linear model.

But first, lets review some probability theory.

Recall, two variables A and B are independent if and only if

P (AB) = P (A) × P (B)

Also recall that Bayes Law states for any two random variables

P (A|B) =
P (AB)

P (B)

and thus, when X and Y are independent,

P (A|B) =
P (A)P (B)

P (B)
= P (A)
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Conditional Independence

Definitions:

In layer k where k ∈ {1, 2, . . . , Z}, X and Y are conditionally independent at level k of Z

when
P (Y = j|X = i, Z = k) = P (Y = j|Z = k), ∀i, j

If X and Y are conditionally independent at ALL levels of Z, then X and Y are
CONDITIONALLY INDEPENDENT.
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Application of the Multinomial

Suppose that a single multinomial applies to the entire three-way table with cell probabilities
equal to

πijk = P (X = i, Y = j, Z = k)

Let

π
·jk =

P
X

P (X = i, Y = j, Z = k)

= P (Y = j, Z = k)

Then,
πijk = P (X = i, Z = k)P (Y = j|X = i, Z = k)

by application of Bayes law. (The event (Y = j) = A and (X = i, Z = k) = B).
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Then if X and Y are conditionally independent at level z of Z,

πijk = P (X = i, Z = k)P (Y = j|X = i, Z = k)

= πi·kP (Y = j|Z = k)

= πi·kP (Y = j, Z = k)/P (Z = k)

= πi·kπ·jk/π··k

for all i, j, and k.
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(2 × 2) table

• Lets suppose we are interested in a (2 × 2) table for the moment

• Let X describe the row effect and Y describe the column effect

• If X and Y are independent, then

πij = πi·π·j

• Then the expected cell count for the ijth cell would be

nπij = µij = nπi·π·j

Or,

log µij = λ + λX
i + λY

j

• This model is called the log-linear model of independence
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Interaction term

• In terms of a regression model, a significant interaction term indicates that the
response varies as a function of the combination of X and Y

• That is, changes in the response as a function of X require the specification of Y to
explain the change

• This implies that X and Y are NOT INDEPENDENT

• Let λXY
ij denote the interaction term

• Testing λXY
ij = 0 is a test of independence
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Log-linear Models for (2 × 2) tables

• Unifies all probability models discussed.

• We will use log-linear models to describe designs in which

1. Nothing is fixed (Poisson)

2. The total is fixed (multinomial sampling or double dichotomy)

3. One margin is fixed (prospective or case-control)

• Represents expected cell counts as functions of row and column effects and
interactions

• Makes no distinction between response and explanatory variables.

• Can be generalized to larger dimensions (R × C, 2 × 2 × 2, 2 × 2 × K, etc.)
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As before, for random counts, double dichotomy, prospective, and case-control designs

Variable (Y )

1 2

1
Variable (X)

2

Y11 Y12 Y1+

Y21 Y22 Y2+

Y+1 Y+2 Y++
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The expected counts are µjk = E(Yjk)

Variable (Y )

1 2

1
Variable (X)

2

µ11 µ12 µ1+

µ21 µ22 µ2+

µ+1 µ+2 µ++
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Example

An example of such a (2 × 2) table is

Cold incidence among French Skiers (Pauling, Proceedings of the national Academy of
Sciences, 1971).

OUTCOME

NO
|COLD | COLD | Total

T ---------+--------+--------+
R VITAMIN | | |
E C | 17 | 122 | 139
A | | |
T ---------+--------+--------+
M NO | | |
E VITAMIN | 31 | 109 | 140
N C | | |
T ---------+--------+--------+

Total 48 231 279

Regardless of how these data were actually collected, we have shown that the estimate of
the odds ratio is the same for all designs, as is the likelihood ratio test and Pearson’s
chi-square for independence.
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Using SAS Proc Freq

data one;
input vitc cold count;
cards;
1 1 17
1 2 122
2 1 31
2 2 109
;

proc freq;
table vitc * cold / chisq measures;
weight count;

run;
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/ * SELECTED OUTPUT* /

Statistics for Table of vitc by cold

Statistic DF Value Prob
--------------------------------------------------- ---
Chi-Square 1 4.8114 0.0283 (Pearsons’)
Likelihood Ratio Chi-Square 1 4.8717 0.0273

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
--------------------------------------------------- --------------
Case-Control (Odds Ratio) 0.4900 0.2569 0.9343

Instead of just doing this analysis for a (2 × 2) table, we will now discuss a ‘log-linear’ model
for a (2 × 2) table
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Expected Counts

Expected cell counts µjk = E(Yjk) for different designs

Y

1 2

Poisson µ11 µ12 (Poisson mean)
1 Double Dichotomy np11 np12 (table prob sums to 1)

Prospective n1p1 n1(1 − p1) (row prob sums to 1)
Case Control n1π1 n2π2 (col prob sums to 1)

X

Poisson µ21 µ22

2 Double Dichotomy np21 n(1 − p11 − p12 − p21)

Prospective n2p2 n2(1 − p2)

Case Control n1(1 − π1) n2(1 − π2)
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Log-linear models

• Often, when you are not really sure how you want to model the data (conditional on the
total, conditional on the rows or conditional on the columns), you can treat the data as
if they are Poisson (the most general model) and use log-linear models to explore
relationships between the row and column variables.

• The most general model for a (2 × 2) table is a Poisson model (4 non-redundant
expected cell counts).

• Since the expected cell counts are always positive, we model µjk as an exponential
function of row and column effects:

µjk = exp(µ + λX
j + λY

k + λXY
jk )

where
λX

j = jth row effect

λY
k = kth column effect

λXY
jk = interaction effect in jth row, kth column
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• Equivalently, we can write the model as a log-linear model:

log(µjk) = µ + λX
j + λY

k + λXY
jk

• Treating the 4 expected cell counts as non-redundant, we can write the model for µjk

as a function of at most 4 parameters. However, in this model, there are 9 parameters,

µ, λX
1 , λX

2 , λY
1 , λY

2 , λXY
11 , λXY

12 , λXY
21 , λXY

22 ,

but only four expected cell counts µ11, µ12, µ21, µ22.
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• Thus, we need to put constraints on the λ’s, so that only four are non-redundant.

• We will use the ‘reference cell’ constraints, in which we set any parameter with a ‘2’ in
the subscript to 0, i.e.,

λX
2 = λY

2 = λXY
12 = λXY

21 = λXY
22 = 0,

leaving us with 4 unconstrained parameters

µ, λX
1 , λY

1 , λXY
11

as well as 4 expected cell counts:

[µ11, µ12, µ21, µ22]
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Expected Cell Counts for the Model

• Again. the model for the expected cell count is written as

µjk = exp(µ + λX
j + λY

k + λXY
jk )

• In particular, given the constraints, we have:

µ11 = exp(µ + λX
1 + λY

1 + λXY
11 )

µ12 = exp(µ + λX
1 )

µ21 = exp(µ + λY
1 )

µ22 = exp(µ)
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Regression Framework

• In terms of a regression framework, you write the model as

2
6664

log(µ11)

log(µ12)

log(µ21)

log(µ22)

3
7775 =

2
6664

µ + λX
1 + λY

1 + λXY
11

µ + λX
1

µ + λY
1

µ

3
7775 =

2
6664

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 0

3
7775

2
6664

µ

λX
1

λY
1

λXY
11

3
7775

• i.e., you create dummy or indicator variables for the different categories.

log(µjk) = µ + I(j = 1)λX
1 + I(k = 1)λY

1 + I[(j = 1), (k = 1)]λXY
11

where

I(A) =

(
1 if A is true
0 if A is not true

.
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• For example,

log(µ21) = µ + I(2 = 1)λX
1 + I(1 = 1)λY

1 + I[(2 = 1), (1 = 1)]λXY
11

= µ + 0 · λX
1 + 1 · λY

1 + 0 · λXY
11

= µ + λY
1
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Interpretation of the λ’s

• We can solve for the λ’s in terms of the µjk ’s.

log(µ22) = µ

log(µ12) − log(µ22) = (µ + λX
1 ) − µ

= λX
1

log(µ21) − log(µ22) = (µ + λY
1 ) − µ

= λY
1
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Odds Ratio

log(OR) = log µ11µ22

µ21µ12

= log(µ11) + log(µ22) − log(µ21) − log(µ12)

= (µ + λX
1 + λY

1 + λXY
11 ) + µ

−(µ + λY
1 ) − (µ + λX

1 )

= λXY
11

Important: the main parameter of interest is the log odd ratio, which equals λXY
11 in this

model.
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• The model with the 4 parameters

µ, λX
1 , λY

1 , λXY
11

is called the ‘saturated model’ since it has as many free parameters as possible for a
(2 × 2) table which has the four expected cell counts µ11, µ12, µ21, µ22.
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• Also, you will note that Agresti uses different constraints for the log-linear model,
namely

2X

j=1

λX
j = 0,

2X

k=1

λX
k = 0,

and
2X

j=1

λXY
jk = 0 for k = 1, 2

and
2X

k=1

λXY
jk = 0 for j = 1, 2

Lecture 22: Introduction to Log-linear Models – p. 26/59



• Agresti’s model is just a different parameterization for the ‘saturated model’. I think the
one we are using (Reference Category) is a little easier to work with.

• The log-linear model as we have written it, makes no distinction between what margins
are fixed by design, and what margins are random.

• Again, when you are not really sure how you want to model the data (conditional on
the total, conditional on the rows or conditional on the columns) or which model is
appropriate, you can use log-linear models to explore the data.
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Parameters of interest for different designs and the MLE’s

• For all sampling plans, we are interested in testing independence:

H0:OR = 1.

• As shown earlier for the log-linear model, the null is

H0:λXY
11 = log(OR) = 0.

• Depending on the design, some of the parameters of the log-linear model are actually
fixed by the design.

• However, for all designs, we can estimate the parameters (that are not fixed by the
design) with a Poisson likelihood, and get the MLE’s of the parameters for all designs.

• This is because the kernel of the log-likelihood for any of these design is the same
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The different designs

Random Counts

• To derive the likelihood, note that

P (Yjk = njk|Poisson) =
e−µjk µ

njk

jk

njk!

• Thus, the full likelihood is

L =
Y

j

Y

k

e−µjk µ
njk

jk

njk!

• Or,

l =
X

j

X

k

−µjk +
X

j

X

k

njk log µjk + K

• Or, in terms of the kernel, the Poisson log-likelihood is

l∗ = −µ++ + y11log(µ11) + y12log(µ12) + y21log(µ21) + y22log(µ22)
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• Consider the log-linear model

µjk = exp[µ + λX
j + λY

k + λXY
jk ]

• Then, substituting this in the log-likelihood, we get

log[L(µ, λX
1 , λY

1 , λXY
11 )] =

−µ++ +
P2

j=1

P2
k=1 yjk[µ + λX

j + λY
k

+ λXY
jk

] =

−µ++ + µy++ +
P2

j=1 λX
j yj+ +

P2
k=1 λY

k
y+k +

P2
j=1

P2
k=1 yjkλXY

jk
=

−µ++ + µy++ + λX
1 y1+ + λY

1 y+1 + λXY
11 y11

since we constrained all λ terms to be 0 with a subscript equal to 2.
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• Note, here, that the likelihood is a function of the parameters

(µ, λX
1 , λY

1 , λXY
11 )

and the random variables
(y++, y1+, y+1, y11)

• The random variables
(y++, y1+, y+1, y11)

are called sufficient statistics, i.e., all the information from the data in the likelihood are
contained in the sufficient statistics

• In particular, when taking derivatives of the log-likelihood to find the MLE, we will be
solving for the estimate of (µ, λX

1 , λY
1 , λXY

11 ) as a function of the sufficient statistics
(y++, y1+, y+1, y11)
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Example

Cold incidence among French Skiers (Pauling, Proceedings of the national Academy of
Sciences, 1971).

OUTCOME

NO
|COLD | COLD | Total

T ---------+--------+--------+
R VITAMIN | | |
E C | 17 | 122 | 139
A | | |
T ---------+--------+--------+
M NO | | |
E VITAMIN | 31 | 109 | 140
N C | | |
T ---------+--------+--------+

Total 48 231 279
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Poisson log-linear model Model

• For the Poisson likelihood, we write the log-linear model for the expected cell counts
as:

2
6664

log(µ11)

log(µ12)

log(µ21)

log(µ22)

3
7775 =

2
6664

µ + λX
1 + λY

1 + λXY
11

µ + λX
1

µ + λY
1

µ

3
7775 =

2
6664

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 0

3
7775

2
6664

µ

λX
1

λY
1

λXY
11

3
7775

• We will use this in SAS Proc Genmod to obtain the estimates
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SAS PROC GENMOD

data one;
input vitc cold count;
cards;
1 1 17
1 2 122
2 1 31
2 2 109
;
run;

proc genmod data=one;
class vitc cold; / * Class automatically create * /

/ * constraints, i.e., dummy * /
/ * variables * /

model count = vitc cold vitc * cold / / * can put interaction terms in * /
link=log dist = poi; / * directly * /

run;
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/ * SELECTED OUTPUT* /

The GENMOD Procedure

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr>Chi

INTERCEPT 1 4.6913 0.0958 2398.9532 0.0000
VITC 1 1 0.1127 0.1318 0.7308 0.3926
VITC 2 0 0.0000 0.0000 . .
COLD 1 1 -1.2574 0.2035 38.1575 0.0000
COLD 2 0 0.0000 0.0000 . .
VITC* COLD 1 1 1 -0.7134 0.3293 4.6934 0.0303
VITC* COLD 1 2 0 0.0000 0.0000 . .
VITC* COLD 2 1 0 0.0000 0.0000 . .
VITC* COLD 2 2 0 0.0000 0.0000 . .
SCALE 0 1.0000 0.0000 . .
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Estimates

• From the SAS Output, the Estimates are:
bµ = 4.6913

bλV IT C
1 = 0.1127

bλCOLD
1 = −1.2574

λV IT C,COLD
11 = log(OR) = −0.7134

• The OR the “regular” way is

log(OR) = log(
17 · 109

31 · 122
) = log(0.499) = −0.7134
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Double Dichotomy

• For the double dichotomy in which the data follow a multinomial, we first rewrite the
log-likelihood

l∗ = −µ++ + y11log(µ11) + y12log(µ12) + y21log(µ21) + y22log(µ22)

in terms of the expected cell counts, and the λ’s :
µ11 = np11 = exp(µ + λX

1 + λY
1 + λXY

11 )

µ12 = np12 = exp(µ + λX
1 )

µ21 = np21 = exp(µ + λY
1 )

µ22 = n(1 − p11 − p12 − p21) = exp(µ)
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• Recall, the multinomial is a function of 3 probabilities

(p11, p12, p21)

since p22 = 1 − p11 − p12 − p21.

• Adding up the µjk ’s in terms of the npjk ’s, it is pretty easy to see that

µ++ =
2X

j=1

2X

k=1

µjk = n

(fixed by design), so that the first term in the log-likelihood, −µ++ = −n is not a
function of the unknown parameters for the multinomial.
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• Then, the multinomial probabilities can be written as

pjk =
µjk

n
=

µjk

µ++

• We can also write µ++ in terms of the λ’s,

µ++ =
P2

j=1

P2
k=1 µjk =

P2
j=1

P2
k=1 exp[µ + λX

j + λY
k

+ λXY
jk

] =

exp[µ]
P2

j=1

P2
k=1 exp[λX

j + λY
k

+ λXY
jk

]
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• Then, we can rewrite the multinomial probabilities as

pjk =
µjk

µ++

=
exp[µ + λX

j + λY
k

+ λXY
jk

]
P2

j=1

P2
k=1 exp[µ + λX

j + λY
k

+ λXY
jk

]

=
exp[µ] exp[λX

j + λY
k

+ λXY
jk

]

exp[µ]
P2

j=1

P2
k=1 exp[λX

j + λY
k

+ λXY
jk

]

=
exp[λX

j + λY
k

+ λXY
jk

]
P2

j=1

P2
k=1 exp[λX

j + λY
k

+ λXY
jk

]
,

which is not a function of µ
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The Multinomial

• We see that these probabilities do not depend on the parameter
µ.

• In particular, for the multinomial, there are only three free probabilities

(p11, p12, p21)

and three parameters.

(λX
1 , λY

1 , λXY
11 ).
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• These probabilities could also have been determined by noting that, conditioning on
the table total n = Y++, the Poisson random variables follow a conditional multinomial,

(Y11, Y12, Y21|Y++ = y++) ∼ Mult(y++, p11, p12, p21)

with

pjk =
µjk

µ++

which we showed above equals

pjk =
exp[λX

j + λY
k

+ λXY
jk

]
P2

j=1

P2
k=1 exp[λX

j + λY
k

+ λXY
jk

]
,

and is not a function of µ.
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Obtaining MLE’s

Thus, to obtain the MLE’s for (λX
1 , λY

1 , λXY
11 ), we have 2 choices:

1. We can maximize the Poisson likelihood.

2. We can maximize the conditional multinomial likelihood.

• If the data are from a double dichotomy, the multinomial likelihood is not a function of
µ. Thus, if you use a Poisson likelihood to estimate the log-linear model when the data
are multinomial, the estimate of µ really is not of interest.

• We will use this in SAS Proc Catmod to obtain the estimates using the multinomial
likelihood.
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Multinomial log-linear model Model

• For the Multinomial likelihood in SAS Proc Catmod, we write the log-linear model for
the three probabilities (p11, p12, p21) as:

p11 =
exp(λX

1 + λY
1 + λXY

11 )

exp(λX
1 + λY

1 + λXY
11 ) + exp(λX

1 ) + exp(λY
1 ) + 1

p12 =
exp(λX

1 )

exp(λX
1 + λY

1 + λXY
11 ) + exp(λX

1 ) + exp(λY
1 ) + 1

p21 =
exp(λY

1 )

exp(λX
1 + λY

1 + λXY
11 ) + exp(λX

1 ) + exp(λY
1 ) + 1
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• Note that the denominator in each probability is

2X

j=1

2X

k=1

exp[λX
j + λY

k + λXY
jk ]

For j = k = 2 in this sum, we have the constraint that λX
2 = λY

2 = λXY
22 = 0 so that

exp[λX
2 + λY

2 + λXY
22 ] = e0 = 1

• Using SAS Proc Catmod, we make the design matrix equal to the combinations of
(λX

1 , λY
1 , λXY

11 ) found in the exponential function in the numerators:

2
64

λX
1 + λY

1 + λXY
11

λX
1

λY
1

3
75 =

2
64

1 1 1

1 0 0

0 1 0

3
75

2
64

λX
1

λY
1

λXY
11

3
75
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SAS PROC CATMOD

data one;
input vitc cold count;
cards;
1 1 17
1 2 122
2 1 31
2 2 109
;
run;

proc catmod data=one;
model vitc * cold = ( 1 1 1, / * 1st col = lambdaˆV * /

1 0 0, / * 2nd col = lambdaˆC * /
0 1 0 ); / * 3rd col = lambdaˆVC * /

weight count;
run;
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/ * SELECTED OUTPUT* /

Response Profiles

Response vitc cold
------------------------

1 1 1
2 1 2
3 2 1
4 2 2

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------- ------------------
Model 1 0.1127 0.1318 0.73 0.3926

2 -1.2574 0.2035 38.16 <.0001
3 -0.7134 0.3293 4.69 0.0303
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Estimates

• From the SAS Output, the Estimates are:
bλV IT C
1 = 0.1127

bλCOLD
1 = −1.2574

λV IT C,COLD
11 = log(OR) = −0.7134

Which is the same as for the Poisson Log-Linear Model and

e(−0.7134) = 0.49

which is the estimate obtained from PROC FREQ

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
--------------------------------------------------- --------------
Case-Control (Odds Ratio) 0.4900 0.2569 0.9343
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Prospective Study

• Now, suppose the data are from a prospective study, or, equivalently, we condition on
the row totals of the (2 × 2) table. We know that, conditional on the row totals
n1 = Y1+ and n2 = Y2+ are fixed, and the total sample size is n++ = n1 + n2.

• Further, we are left with a likelihood that is a product of two independent row binomials.

(Y11|Y1+ = y1+) ∼ Bin(y1+, p1)

where

p1 = P [Y = 1|X = 1] =
µ11

µ1+
=

µ11

µ11 + µ12
;

and
(Y21|Y2+ = y2+) ∼ Bin(y2+, p2)

where

p2 = P [Y = 1|X = 2] =
µ21

µ2+
=

µ21

µ21 + µ22

• And the conditional binomials are independent.
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• Conditioning on the rows, the log-likelihood kernel is

l∗ = −(n1+n2)+y11log(n1p1)+y12log(n1(1−p1))+y21log(n2p2)+y22log(n2(1−p2))

• What are p1 and p2 in terms of the λ’s?

• The probability of success for row 1 is

p1 =
µ11

µ11 + µ12

=
exp(µ + λX

1 + λY
1 + λXY

11 )

exp(µ + λX
1 + λY

1 + λXY
11 ) + exp(µ + λX

1 )

=
exp(µ + λX

1 ) exp(λY
1 + λXY

11 )

exp(µ + λX
1 )[exp(λY

1 + λXY
11 ) + 1]

=
exp(λY

1 + λXY
11 )

1 + exp(λY
1 + λXY

11 )
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• The probability of success for row 2 is

p2 =
µ21

µ21 + µ22

=
exp(µ + λY

1 )

exp(µ + λY
1 ) + exp(µ)

=
exp(µ) exp(λY

1 )

exp(µ)[exp(λY
1 ) + 1]

=
exp(λY

1 )

1 + exp(λY
1 )

• Now, conditional on the row totals (as in a prospective study), we are left with two free
probabilities (p1, p2), and the conditional likelihood is a function of two free parameters
(λY

1 , λXY
11 ).
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Logistic Regression

• Looking at the previous pages, the conditional probabilities of Y given X from the
log-linear model follow a logistic regression model:

px = P [Y = 1|X∗ = x∗]

=
e[λY

1
+λXY

11
x∗]

e[λY
1

+λXY
11

x∗] + 1

=
e[β0+β1x∗]

1 + e[β0+β1x∗]

where

x∗ =

(
1 if x = 1

0 if x = 2
.

and
β0 = λY

1

and
β1 = λXY

11
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• From the log-linear model, we had that λXY
11 is the log-odds ratio, which we know from

the logistic regression, is β1.

• Note, the intercept in a logistic regression with Y as the response is the main effect of
Y in the log-linear model:

β0 = λY
1

• The conditional probability px is not a function of µ or λX
1 .
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Obtaining MLE’s

• Thus, to obtain the MLE’s for (λY
1 , λXY

11 ), we have 3 choices:

1. We can maximize the Poisson likelihood.
2. We can maximize the conditional multinomial likelihood.
3. We can maximize the row product binomial likelihood using a logistic regression

package.

• If the data are from a prospective study, the product binomial likelihood is not a
function of µ or λX

1 .

• Thus, if you use a Poisson likelihood to estimate the log-linear model when the data
are from a prospective study, the estimate of µ or λX

1 really are not of interest.
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Revisiting the Cold Vitamin C Example

• We will let the ‘covariate’ X =TREATMENT and ‘outcome’ Y =COLD.

• We will use SAS Proc Logistic to get the MLES of the intercept

β0 = λY
1 = λCOLD

1

and log-odds ratio

β1 = λXY
11 = λV IT C,COLD

11
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SAS PROC LOGISTIC

data one;
input vitc cold count;
if vitc=2 then vitc=0;
if cold=2 then cold=0;
cards;
1 1 17
1 2 122
2 1 31
2 2 109
;
run;

proc logistic data=one descending; / * descending model pr(Y=1) * /
model cold = vitc / rl ; / * rl gives 95 % CI for OR * /
freq count; / * tells SAS how many subjects * /

/ * each record in dataset represent * /
run;
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/ * SELECTED OUTPUT* /

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.2574 0.2035 38.1575 <.0001
vitc 1 -0.7134 0.3293 4.6934 0.0303

Wald Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits

vitc 1.0000 0.490 0.257 0.934

Estimates

• From the SAS Output, the Estimates are:
bβ0 = bλCOLD

1 = −1.2574

bβ1 = λV IT C,COLD
11 = log(OR) = −0.7134

• Which are the same as for the Poisson and Multinomial Log-Linear Models.
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Recap

• Except for combinatorial terms that are not function of any unknown parameters, using
µjk from the previous table, the kernel of the log-likelihood for any of these design can
be written as

l∗ = −µ++ + y11log(µ11) + y12log(µ12) + y21log(µ21) + y22log(µ22)

• In this likelihood, the table total µ++ is actually known for all designs,

Double Dichotomy n

Prospective n1 + n2

Case Control n1 + n2

except for the Poisson, in which

µ++ = E(Y++)

is a parameter that must be estimated (i.e., the sum of JK independent Poisson
random variables).
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Recap

Key Points:

• We have introduced Log-linear models

• We have defined a parameter in the model to represent the OR

• We do not have an “outcome” per se

• If you can designate an outcome, you minimize the number of parameters estimated

• You should feel comfortable writing likelihoods, If not, you have 3 weeks to gain the
comfort

• Expect the final exam to have at least one likelihood problem
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