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Ordinal Regression Models

• In the previous lecture, we examined a multinomial logistic model defined for a
nominal, multicategory response

• For each of the J − 1 levels of Y , we considered a log-odds model referencing level J

• This baseline category model estimated p× (J − 1) parameters to sufficiently explain
all associations in the data

• In this lecture, we are going to consider simplifications of this model that are possible
when Y is ordinal

• In formulating a regression model, we would like to take this ordering into account.

• We will focus on the most common model, the ‘proportional odds model’
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• Ordinal outcomes are common in
1. Social sciences
2. Market research
3. Opinion polls

• Often a result of discretization of a latent variable

• A latent variable is a psychometric variable that is unobservable but is measured,
typically, by a “scale”

• For example, the Hamilton Depression Rating Scale measures depression on a scale
ranging from approximately 0 to 30 (depending on number of items used)

• Scores less than 7 indicate remission, 7 - 12 moderate depression
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• The purpose of the regression analysis is to explore the association of a group of
covariates on the outcome

• When the outcome is polychotomous, grouping (or dichotomizing) the outcome may
not be possible

• However, if the outcome is ordinal, a first line approach to the analysis may be to group
the outcome into binary categories

• Such as, Depressed v. Not Depressed; “good” v. “poor” rating; etc.

• However, just in the (I × J) contingency tables, collapsing the outcome resulted in a
loss of power
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Example–Arthritis Clinical Trial

• This is the same arthritis clinical trial comparing the drug auranofin and placebo
therapy for the treatment of rheumatoid arthritis (Bombardier, et al., 1986).

• The response of interest is the self-assessment of arthritis, before, I said it was
classified as (0) poor or (1) good. Actually, I had dichotomized the data. The
self-assessment was actually a 5-level ordinal variable: (1) very good, (2) good, (3)
fair, (4) poor, (5) very poor,
(I dichotomized ≤ 3 versus > 3.)

• Individuals were randomized into one of the two treatment groups after baseline
self-assessment of arthritis (with the same 5 levels as the response).
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• The dataset contains 293 patients who were observed at both baseline and 13 weeks.
The data from few cases are shown below:

Subset of cases from the arthritis clinical trial

Self assessmentb

CASE SEX AGE TREATMENTa BASELINE 13 WK.

1 M 54 A 4 1
2 M 64 P 4 5
3 M 48 A 3 3
4 F 41 A 3 2
5 M 55 P 3 2
6 M 64 A 2 2
7 M 64 P 3 4
8 F 55 P 1 2
9 M 39 P 2 5

10 F 60 A 4 3
a A = Auranofin, P = Placebo

b 1=very good, 2=good, 3=fair, 4=poor, 5=very poor.
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• We are again interested in a pretest-posttest analysis, in which we relate the
individual’s discrete response

Yi =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if very good at 13 weeks
2 if good at 13 weeks
3 if fair at 13 weeks
4 if poor at 13 weeks
5 if very poor at 13 weeks

.

• 1. BASELINE self-assessment:

Xi =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if very good at baseline
2 if good at baseline
3 if fair at baseline
4 if poor at baseline
5 if very poor at baseline

.

• 2. AGE IN YEARS,

• 3. GENDER (1 if male, 0 if female)

• 4. TREATMENT (1 if auranofin, 0 if placebo)
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Example–Arthritis Clinical Trial

• The outcome is

Yi =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if very good at 13 weeks
2 if good at 13 weeks
3 if fair at 13 weeks
4 if poor at 13 weeks
5 if very poor at 13 weeks

.

• Suppose we dichotomize the outcome at 1 vs > 1 :

Ui1 =

(

1 if very good at 13 weeks
0 if good, fair, poor, very poor at 13 weeks

.

and let
Fi1 = P (Ui1 = 1|xi) = prob very good

• Since Ui1 is dichotomous, we could formulate a logistic regression model for it:

logit(Fi1) = log

„

Fi1

1 − Fi1

«

= α1 + β′xi.
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• Next, we could dichotomize the outcome at ≤ 2 vs > 2 :

Ui2 =

(

1 if very good or good at 13 weeks
0 if fair, poor, very poor at 13 weeks

.

and let
Fi2 = P (Ui2 = 1|xi) = prob very good or good

• Since Ui2 is dichotomous, we could formulate a logistic regression model for it:

logit(Fi2) = α2 + β′xi.

Note, here, we have assumed the intercepts for logit(Fi1) and logit(Fi2) are different,
but we have assumed the β’s are the same.
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• Going up the ordinal scale, we can form two more dichotomous variables:

Ui3 =

(

1 if very good,good, or fair, at 13 weeks
0 if poor, very poor at 13 weeks

.

Ui4 =

(

1 if very good, good, fair, or poor at 13 weeks
0 if very poor at 13 weeks

.

with
Fi3 = P (Ui3 = 1|xi) and logit(Fi3) = α3 + β′xi

and
Fi4 = P (Ui4 = 1|xi) and logit(Fi4) = α4 + β′xi.
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• In general, the model is

logit(Fij) = log
“

Fij

1−Fij

”

= αj + β′xi

where j = 1, . . . , J − 1 and β is a p × 1 vector of covariates

• This is the cumulative logistic model:

1. You dichotomize the ordinal variables going up (or down) the ordinal scale

2. You form a logistic model for each dichotomous variable, in which the intercepts
(say, αj ’s are different, but the slopes (β’s) are the same.
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Cumulative probabilities

• In general,

Yi =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1 if with prob. pi1

2 if with prob. pi2

.

.

.

J if with prob. piJ

.

where the multinomial probabilities are

pij = P [Yij = 1|xi]
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• We had defined the cumulative random variables Uij :

Uij =

(

1 if Yi ≤ j

0 if Yi > j
.

• We also can define the cumulative probabilities as

Fij = P [Uij = 1|xi] = P [Yi ≤ j|xi] = pi1 + ... + pij

• Note, we only need the first (J − 1) ‘cumulative probabilities’ (Fi1, ..., Fi,J−1) since
the last one always equals 1,

FiJ = P [Yi ≤ J |xi] = pi1 + ... + piJ = 1

• The ‘cumulative’ logit is defined as:

logit(Fij) = log

„

Fij

1 − Fij

«

Lecture 21: Logit Models for Multinomial Responses Continued – p. 13/47



• These cumulative logits are related to covariates in the following logistic regression
model,

logit(Fij) = αj + x′iβ,

for j = 1, ..., J − 1

• This model also implies that the cumulative logits j and j′, logit(Fij) and logit(Fij′),

have the same slopes β, but the intercepts αj differ

• In other words, the coefficients β of the covariate vector xi are the same for all
cumulative probabilities, and does not depend on j.

• The ordering of the data is taken into account with this common β assumption.

• The proportional odds model can also be derived by discretizing an underlying
continuous logistic random variable (and, of course, any continuous variable has an
ordering).
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Interpretation ofβ

• Suppose we have two covariate xi = (xi1, xi2), to give the model,

logit(Fij) = αk + xi1β1 + xi2β2

• What is the interpretation of β1?

• Just as in ordinary logistic regression, β1 has the interpretation as the log-odds ratio
for a cumulative probability for a one unit increase in xi1 while keeping the other
covariates constant, i.e.,

β1 = log

„

Fij(xi1 = c + 1)/[1 − Fij(xi1 = c + 1)]

Fij(xi1 = c)/[1 − Fij(xi1 = c]

«

,

which is often called the ‘cumulative’ log(OR):
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• It is actually the log-odds ratio for

(Yi ≤ j) versus (Yi > j)

for a one unit change in the covariate xi1.

• Further, for two values of xi1, say c1 and c2,

β1(c1 − c2) = log

„

Fij(xi1 = c1)/[1 − Fij(xi1 = c1)]

Fij(xi1 = c2)/[1 − Fij(xi1 = c2]

«

,

• The cumulative log-odds ratio is proportional to the distance between the two values of
the covariate xi1, which is one reason this is called the ‘proportional odds’.
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• Since the log-odds ratio does not depend on the intercept αj (as is the case in ordinary
logistic regression), the log-odds ratios will be the same, for any cumulative probability:

β1 = log
“

Fij(xi1=c+1)/[1−Fij(xi1=c+1)]

Fij(xi1=c)/[1−Fij(xi1=c]

”

= log

„

F
ij′

(xi1=c+1)/[1−F
ij′

(xi1=c+1)]

F
ij′

(xi1=c)/[1−F
ij′

(xi1=c]

«

• Then, the odds ratio for
(Yi ≤ j) versus (Yi > j)

for a one unit increase in a covariate does not depend on which cumulative probability
(j) you are looking at.

• This model says that if you have a discrete, ordinal random variable, and you want to
dichotomize it (above and below a given j), and use ordinary logistic regression, your
odds ratio will not change, regardless of where you dichotomize it. Only the intercept
will be different.
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• In the above example, suppose you are looking at the response versus treatment odds
ratio, then, when comparing the new treatment versus placebo, the cumulative odds
ratios are all equal:

OR(very good vs. < very good) =

OR(≥ good vs. < good) =

OR(≥ fair vs. < fair) =

OR(≥ poor vs. very poor)

• When we look at the output, we will see that, unlike the above polytomuous logit, we
will get only one set of β’s, although we will get J − 1 intercepts.

logit(Fij) = αj + x′iβ,
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Non-proportional Odds

• The proportional odds model says that if you have a discrete, ordinal random variable,
and you want to dichotomize it (above and below a given j), and use ordinary logistic
regression, your odds ratio will not change, regardless of where you dichotomize it.

• On the other hand, we could have a ‘non-proportional’ odds model, in which the
proportionality constant (log-odds ratio) depends on the response level j

logit(Fij) = αk + x′iβj

• Here, the log-odds ratio depends on j :

β1j(c1 − c2) = log

„

Fij(xi1 = c1)/[1 − Fij(xi1 = c1)]

Fij(xi1 = c2)/[1 − Fij(xi1 = c2]

«

.

• Unfortunately, you can’t fit this model easily in the computer.

Lecture 21: Logit Models for Multinomial Responses Continued – p. 19/47



Score Stat for Proportional Odds

• SAS gives the score test for all the (K × 1) vectors βj ’s being equal,

H0 : β1 = β2 = ... = βJ−1 = β

Under the null, there is one K × 1 vector β, and under the alternative, there are
(J − 1), K × 1 vectors β1, β2, ..., βJ−1, so the score statistic will have

df = # parameters in full model - # parameters in reduced model
= (J − 1)K − K = (J − 2)K
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MLE’s

• To write down the likelihood, note, we can write the original multinomial probabilities in
terms of the cumulative probabilities via:

pij = (pi1 + ... + pij) − (pi1 + ... + pi,j−1)

= Fij − Fi,j−1

• The likelihood is the product over the multinomial likelihoods (of sample size 1) for
individual:

Li(α, β) =
J

Y

j=1

[pij(α, β)]yij ,

• The overall likelihood is

L(α, β) =
n

Y

i=1

J
Y

j=1

[pij(α, β)]yij ,
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• Then, we obtain the MLE and use the inverse information to estimate its variance.

• Can obtain the MLE in SAS Proc Logistic.

• You can use likelihood ratio (or change in Deviance), Wald or score statistics for
hypothesis testing.

• You can also use the Deviance as a goodness-of-fit statistic if the data are grouped
multinomial, meaning you have nj subjects with the same covariate values (and thus
the same multinomial distribution).

• You can also use Pearson’s chi-square as a goodness-of-fit statistic.
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Example–Arthritis Clinical Trial

• The outcome is

Yi =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if very good at 13 weeks
2 if good at 13 weeks
3 if fair at 13 weeks
4 if poor at 13 weeks
5 if very poor at 13 weeks

.

• There are 4 cumulative probabilities created by default in SAS Proc Logistic (going
from lowest to highest):

Fi1 = pi1 = prob very good

Fi2 = pi1 + pi2 = prob very good or good

Fi3 = pi1 + pi2 + pi3 = prob very good, good, or fair

Fi4 = pi1 + pi2 + pi3 + pi4 = prob very good, good, fair, or poor
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• The model is

logit(Fij) = αj + β1xi + βSEXSEXi+

βAGEAGEi + βTRTTRTi

where the covariates are age in years at baseline (AGEi), sex (SEXi, 1=male,
0=female), treatment (TRTi, 1 = auranofin, 0 = placebo), and xi is baseline response
(treated as continuous, 1-5)
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• The main question is still whether the treatment increases the odds of a more
favorable response, after controlling for baseline response; secondary questions are
whether the response differs by age and sex.

• If you use the ‘descending’ option in Proc Logistic, you get the 4 cumulative
probabilities going from highest to lowest:

Fi1 = pi5 = prob very poor

Fi2 = pi5 + pi4 = prob very poor or poor

Fi3 = pi1 + pi2 + pi3 = prob very poor, poor, or fair

Fi4 = pi1 + pi2 + pi3 + pi4 = prob very poor, poor, fair, or good
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SAS Proc Logistic

The following ascii is in the current directory, and called art2.dat
1 54 1 4 1
0 41 0 3 2
1 48 1 3 2
1 40 0 3 2
1 29 1 3 2
. . . . .
. . . . .
. . . . .
1 39 1 3 3
0 35 1 3 3
0 35 1 3 3
0 65 0 3 3
1 55 0 4 3
0 42 1 5 4
1 37 0 3 3
1 52 0 3 3
1 60 0 3 4
1 63 1 4 4
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/* SAS STATEMENTS */

DATA ARTH;
infile ’art2.dat’;
input SEX AGE TRT x y;

;

proc logistic;
model y = SEX AGE TRT x;

run;
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Data Set WORK.ARTH
Response Variable y
Number of Response Levels 5
Model cumulative logit

Response Profile
Ordered

Value Y Count

1 1 38
2 2 93
3 3 103
4 4 49
5 5 10

Probabilities modeled are cumulated over the lower Ordered Values.

Score Test for the Proportional Odds Assumption
Chi-Square = 12.8763 with 12 DF (p=0.3781)
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Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr >
Variable DF Estimate Error Chi-Square Chi-Square

INTERCP1 1 0.9850 0.6395 2.3727 0.1235
INTERCP2 1 2.9290 0.6531 20.1114 0.0001
INTERCP3 1 4.7706 0.6904 47.7450 0.0001
INTERCP4 1 6.9144 0.7677 81.1098 0.0001
SEX 1 0.2648 0.2416 1.2018 0.2730
AGE 1 -0.0165 0.00978 2.8470 0.0915
TRT 1 0.6926 0.2181 10.0890 0.0015
X 1 -0.9190 0.1271 52.2807 0.0001
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Conditional Odds Ratio and 95% Confidence Limits

Odds
Variable Ratio Lower Upper

INTERCP1 2.678 0.765 9.378
INTERCP2 18.710 5.201 67.301
INTERCP3 117.992 30.491 456.600
INTERCP4 999.000 223.549 999.000
SEX 1.303 0.812 2.092
AGE 0.984 0.965 1.003
TRT 1.999 1.304 3.065
X 0.399 0.311 0.512
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• We see that the assumption of parallel lines (proportional odds) is not violated since
the test for proportional odds is not rejected:

Chi-Square = 12.8763 with 12 DF (p=0.3781)

• We interpret the results to mean that

1. Treatment (p = 0.0015) does significantly improve the response. Since the
treatment effect is approximately .69, being on auranofin tends to increase the odds of
response level j or lower (which means a better response), by exp(.69) ≈ 2.0.

Comparison to earlier results

• When we dichotomized Y earlier, we estimated βtx = 0.7005 with exp(.7) = 2.015.

• The estimated standard error was 0.3136 compared to the proportional odds estimate
of 0.2181

• I.e., dichotomizing the outcome resulted in a loss of power for H0 : βtx = 0

• but the parameter estimate is nearly identical (as expected under the proportional
odds model – i.e., same model regardless of cut point selection)
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• 2. Individuals with a better baseline status tend to have a better response at thirteen
weeks (p = 0.0001). Since the baseline effect is approximately -.92, a one unit
increase in the baseline response (say, from fair to poor), tends to decrease the odds
of response level j or lower (the better response), by exp(−.92) ≈ .4

• 3. Older individuals seem to have a worse outcome than younger individuals
(p = 0.0915), although not significant at the .05 level),

• 4. SEX (p = 0.2730) is not significant.
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One more example

The data are reproduced from Lindsey (1995) and show the severity of pneumoconiosis as
related to the number of years working at a coal factory.

Pneumoconiosis

Years Normal Mild Severe

0.5 - 11 98 0 0

12-18 51 2 1

19-24 34 6 3

25-30 35 5 8

31-36 32 10 9

37-42 23 7 8

43-49 12 6 10

50-59 4 2 5
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data lindsey;
input years $rep $year count @@;
if rep eq ’sev’ then resp=’asever’;
else if rep eq ’mild’ then resp=’bmild’;
else resp = ’normal’;
lyear = log(year);

cards;
1 norm 5.75 98 1 mild 5.75 0 1 sev 5.75 0
2 norm 15 51 2 mild 15 2 2 sev 15 1
3 norm 21.5 34 3 mild 21.5 6 3 sev 21.5 3
4 norm 27.5 35 4 mild 27.5 5 4 sev 27.5 8
5 norm 33.5 32 5 mild 33.5 10 5 sev 33.5 9
6 norm 39.5 23 6 mild 39.5 7 6 sev 39.5 8
7 norm 46 12 7 mild 46 6 7 sev 46 10
8 norm 51.5 4 8 mild 51.5 2 8 sev 51.5 5
;
run;
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proc logistic;
weight count;
model resp = lyear / aggregate scale=1;
run;

/* Selected Output */
Model Information

Data Set WORK.LINDSEY
Response Variable resp
Number of Response Levels 3
Number of Observations 22
Weight Variable count
Sum of Weights 371
Model cumulative logit
Optimization Technique Fisher’s scoring
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Selected Output

Response Profile

Ordered Total Total
Value resp Frequency Weight

1 asever 7 44.00000
2 bmild 7 38.00000
3 normal 8 289.00000

Probabilities modeled are cumulated over the lower Ordered Values.

NOTE: 2 observations having zero frequencies or weights were excluded since
contribute to the analysis.
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Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

0.1387 1 0.7096

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 5.0007 13 0.3847 0.9752
Pearson 4.6806 13 0.3600 0.9816

Number of unique profiles: 8

For this data, we have good justification for the null hypothesis of proportional odds
assumption and that our model fits the data well. However, we have some indication that our
model is predicting greater variability than what was observed.
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept asever 1 -10.5728 1.3463 61.6776 <.0001
Intercept bmild 1 -9.6672 1.3249 53.2392 <.0001
lyear 1 2.5943 0.3813 46.2850 <.0001

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

lyear 13.387 6.340 28.268
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Thus, our estimated logs are

odds

„

Severe
Mild or Normal

«

= exp(−10.5728 + 2.5943lyear)

and

odds

„

Severe or Mild
Normal

«

= exp(−9.6672 + 2.5943lyear)

Or, for a person working for 20 years

odds

„

Severe
Mild or Normal

«

= exp(−10.5728 + 2.5943 · ln(20)) = 0.059

and

odds

„

Severe or Mild
Normal

«

= exp(−9.6672 + 2.5943 · ln(20)) = 0.143
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Therefore,

1. Approximately 6% (0.059/(1+0.059)) or 1 in 18 miners working for 20 years is expected
to develop severe pneumoconiosis

2. Approximately 13% or roughly 1 in 8 miners working for 20 years is expected to
develop severe or mild pneumoconiosis
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The adjacent categories logit

• Recall, for individual i, we had the covariate vector xi,

• Suppose we look at categories j and j + 1, and we condition on the response being in
one of these two categories

p∗ij = P [Yij = 1|Yij + Yi,j+1 = 1, xi]

=
P [Yij=1|xi]

P [Yij=1|xi]+P [Yi,j+1=1|xi]

=
pij

pij+pi,j+1
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• Then, consider the logit of being in category j (given that the response is category j or
j + 1).

logit(p∗ij) = log

„

p∗

ij

1−p∗

ij

«

= log
“

pij/[pij+pi,j+1]

pi,j+1/[pij+pi,j+1]

”

= log
“

pij

pi,j+1

”

• Suppose we model this logit with

logit(p∗ij) = log
“

pij

pi,j+1

”

= αj + β′xi,

for j = 1, ..., J − 1.

• Note, β is the same for all j.
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• What is the interpretation of an element of the vector β, (assuming it is a scalar)

• As was the case with ordinary logistic regression, β is the log- odds ratio for response
j versus j + 1 when the covariate x is increased by one unit.

• The logistic model says that the log-odds ratio for going from category j to j + 1 is the
same as going from category j′ to j′ + 1, i.e., adjacent categories have the same
log-odds ratio.

• The ordering is taken into account, because categories d levels apart, i.e., d = j′ − j,
have log-odds ratio equal to

dβ.
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• For example, suppose we look at j and j − 2 :

• For category j − 1 and j

log

„

pi,j−1

pij

«

= αj−1 + β′xi,

• For category j − 2 and j − 1, ,

log

„

pi,j−2

pi,j−1

«

= αj−2 + β′xi,

• Then,

log
“

pi,j−2

pij

”

= log
“

pi,j−1

pij

”

+ log
“

pi,j−2

pi,j−1

”

= “after a little algebra”
= [αj−1 + β′xi] + [αj−2 + β′xi]

= [αj−1 + αj−2] + [2β′]xi

• Then, odds ratio for responses two levels apart is
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• In general, the adjacent categories logit is a special case of the polytomous logistic (so
you can use a polytomous logistic regression package):

• Recall, the J − 1 logits for polytomous logistic regression uses the last level J as
reference:

log

„

pij

piJ

«

= [αj + ... + αJ−1 + (J − j)β′xi].

• In terms of interpretation and implementation, you do better to use the baseline
category model or the proportional odds model
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Pictures of the estimated response profiles

data estimated;
do lyear = 1.5 to 6.0 by 0.001;
mod = "Severe v. Mild or Normal";
prob = exp(-10.5728 + 2.5943* lyear)/ (1+exp(-10.5728 + 2.5943* lyear));
output;
mod="Severe or Mild v. Normal";
prob = exp(-9.6672 + 2.5943* lyear)/ (1+exp(-9.6672 + 2.5943* lyear));
output;

end;
run;

proc gplot data=estimated;
plot prob * lyear =mod;
run;
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