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Ordinal Regression Models

® In the previous lecture, we examined a multinomial logistic model defined for a
nominal, multicategory response

e [or each of the J — 1 levels of Y, we considered a log-odds model referencing level J

e This baseline category model estimated p x (J — 1) parameters to sufficiently explain
all associations in the data

e In this lecture, we are going to consider simplifications of this model that are possible
when Y is ordinal

e In formulating a regression model, we would like to take this ordering into account.
e We will focus on the most common model, the ‘proportional odds model’
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Ordinal outcomes are common in
1. Social sciences
2. Market research
3. Opinion polls

Often a result of discretization of a latent variable

A latent variable is a psychometric variable that is unobservable but is measured,
typically, by a “scale”

For example, the Hamilton Depression Rating Scale measures depression on a scale
ranging from approximately O to 30 (depending on number of items used)

Scores less than 7 indicate remission, 7 - 12 moderate depression
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The purpose of the regression analysis is to explore the association of a group of
covariates on the outcome

When the outcome is polychotomous, grouping (or dichotomizing) the outcome may
not be possible

However, if the outcome is ordinal, a first line approach to the analysis may be to group
the outcome into binary categories

Such as, Depressed v. Not Depressed; “good” v. “poor” rating; etc.

However, just in the (I x J) contingency tables, collapsing the outcome resulted in a
loss of power
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Example—Arthritis Clinical Trial

e This is the same arthritis clinical trial comparing the drug auranofin and placebo
therapy for the treatment of rheumatoid arthritis (Bombardier, et al., 1986).

® The response of interest is the self-assessment of arthritis, before, | said it was
classified as (0) poor or (1) good. Actually, | had dichotomized the data. The
self-assessment was actually a 5-level ordinal variable: (1) very good, (2) good, (3)
fair, (4) poor, (5) very poor,
(I dichotomized < 3 versus > 3.)

e Individuals were randomized into one of the two treatment groups after baseline
self-assessment of arthritis (with the same 5 levels as the response).
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e The dataset contains 293 patients who were observed at both baseline and 13 weeks.
The data from few cases are shown below:

Subset of cases from the arthritis clinical trial

Self assessment?

CASE SEX AGE TREATMENT® BASELINE 13 WK.
1 M 54 A 4 1
2 M 64 P 4 5
3 M 48 A 3 3
4 F 41 A 3 2
5 M 55 P 3 2
6 M 64 A 2 2
7 M 64 P 3 4
8 F 55 P 1 2
9 M 39 P 2 5

10 F 60 A 4 3

@ A = Auranofin, P = Placebo

b 1=very good, 2=good, 3=fair, 4=poor, 5=very poar.
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e \We are again interested in a pretest-posttest analysis, in which we relate the
individual’s discrete response

( 1if very good at 13 weeks
2 if good at 13 weeks

Y, = ¢ 3iffair at 13 weeks

4 if poor at 13 weeks

5 if very poor at 13 weeks

( 1if very good at baseline
2 if good at baseline
X; = ¢ Jiffair at baseline
4 if poor at baseline
_ 5 if very poor at baseline

e 2. AGE IN YEARS,
e 3. GENDER (1 if male, O if female)

| i e O slacebo

Lecture 21: Logit Models for Multinomial Responses Continued — p. 7/47



Example—Arthritis Clinical Trial

® The outcome is
( 1if very good at 13 weeks

2 if good at 13 weeks

Y, = ¢ 3iffair at 13 weeks

4 if poor at 13 weeks

. 5 if very poor at 13 weeks

® Suppose we dichotomize the outcome at 1 vs > 1 :

. — 1 if very good at 13 weeks
") 0if good, fair, poor, very poor at 13 weeks

and let
F;1 = P(U;; = 1|x;) = prob very good

® Since U, is dichotomous, we could formulate a logistic regression model for it:

Fi1

1— Fin

logit( F;1) = log ( ) = a1 + B'%;.
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® Next, we could dichotomize the outcome at < 2vs > 2:

. — 1 if very good or good at 13 weeks
> 7 ) 0if fair, poor, very poor at 13 weeks

and let
Fis = P(U;2 = 1|x;) = prob very good or good

® Since U, is dichotomous, we could formulate a logistic regression model for it:
|Ogit(Fi2) = a9 + ,B/Xi.

Note, here, we have assumed the intercepts for logit( F;1) and logit( F;2) are different,
but we have assumed the 3's are the same.
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e Going up the ordinal scale, we can form two more dichotomous variables:

1 if very good,good, or fair, at 13 weeks
Uiz = .
O if poor, very poor at 13 weeks

1 if very good, good, fair, or poor at 13 weeks
Uia = .
O if very poor at 13 weeks

with
Fi3 = P(Uig = 1|x7;) and |Ogit(Fi3) = a3 + ,B/Xi

and
Fiqg = P(Ujq = 1|x;) and logit(F34) = g + B'x;.
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® In general, the model is

|Og|t(F¢j) = log (1_137,” )
= a; + 8%
where 5 =1,...,J —1and Bis a p x 1 vector of covariates

e This is the cumulative logistic model:

1. You dichotomize the ordinal variables going up (or down) the ordinal scale

2. You form a logistic model for each dichotomous variable, in which the intercepts
(say, a;’s are different, but the slopes (3's) are the same.
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Cumulative probabilities

® In general,
1 if with prob. p;q
2 if with prob. p;o

J if with prob. p; ;

where the multinomial probabilities are

pij = P[Yi; = 1|x]
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We had defined the cumulative random variables U;; :

g ) LifYi<y
YY) 0ifY; >

We also can define the cumulative probabilities as
F;; = PlU;; = 1x;] = PlY; < jl|xs] = pi1 + ... + pij

Note, we only need the first (J — 1) ‘cumulative probabilities’ (F;1, ..., F; j—1) since
the last one always equals 1,

Fiy = PlY; < Jlx] =pix + ... +pig =1

The ‘cumulative’ logit is defined as:
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These cumulative logits are related to covariates in the following logistic regression
model,

|Ogit(F7;j) = a; + X;B,
forj=1,....,.J —1
This model also implies that the cumulative logits j and j’, logit(F3;) and logit(F} /),
have the same slopes 3, but the intercepts «; differ

In other words, the coefficients 3 of the covariate vector x; are the same for all
cumulative probabilities, and does not depend on ;.

The ordering of the data is taken into account with this common 3 assumption.

The proportional odds model can also be derived by discretizing an underlying
continuous logistic random variable (and, of course, any continuous variable has an
ordering).
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Interpretation of;

® Suppose we have two covariate x; = (x;1, x;2), to give the model,
|Og|t(Fw) = o + xilﬁl + ZC@'ZBQ

e \What is the interpretation of 37

e Just as in ordinary logistic regression, 51 has the interpretation as the log-odds ratio
for a cumulative probability for a one unit increase in x;; while keeping the other
covariates constant, i.e.,

Fij(xin =c+1)/[1 — Fij(wa = c+ 1)])

f1 = log ( Fij(zin = ¢)/[1 = Fij(zi = ¢

which is often called the ‘cumulative’ log(OR):
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It is actually the log-odds ratio for
(Y; <j) versus (Y; >7)

for a one unit change in the covariate x;1 .

Further, for two values of x;1, say c¢; and ca,

_ Fij(xi1 = c1)/[1 — Fyj(xi1 = c1)]
B1(c1 — c2) = log ( [Py pa— ) :

The cumulative log-odds ratio is proportional to the distance between the two values of
the covariate x;1, which is one reason this is called the ‘proportional odds’.
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e Since the log-odds ratio does not depend on the intercept «; (as is the case in ordinary
logistic regression), the log-odds ratios will be the same, for any cumulative probability:

. Fij(xiy=c+1)/[1-F;;(x;1=c+1)]
fr = log( JFij(fEil:C)/[l_FiJj(xilzc] )

— 1 Fz-j/(a:“:c—{—l)/[l—Fij/(a;“:c—l—l)]
= log Fy o (zji=c)/[1=F; ;s (x31=c]

® Then, the odds ratio for
(Y; <j) versus (Y; > j)

for a one unit increase in a covariate does not depend on which cumulative probability
(4) you are looking at.

e This model says that if you have a discrete, ordinal random variable, and you want to
dichotomize it (above and below a given j), and use ordinary logistic regression, your
odds ratio will not change, regardless of where you dichotomize it. Only the intercept
will be different.
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e In the above example, suppose you are looking at the response versus treatment odds
ratio, then, when comparing the new treatment versus placebo, the cumulative odds
ratios are all equal:

OR(very good vs. < very good)
OR(> good vs. < good)

OR(> fair vs. < fair) =
OR(> poor vs. very poor)

e \When we look at the output, we will see that, unlike the above polytomuous logit, we
will get only one set of 5’s, although we will get J — 1 intercepts.

|Og|t(Fw) =y + X;B,
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Non-proportional Odds

e The proportional odds model says that if you have a discrete, ordinal random variable,
and you want to dichotomize it (above and below a given j), and use ordinary logistic
regression, your odds ratio will not change, regardless of where you dichotomize it.

e On the other hand, we could have a ‘non-proportional’ odds model, in which the
proportionality constant (log-odds ratio) depends on the response level j

|Ogit(F7;j) = oL + X;Bj

® Here, the log-odds ratio depends on j :

Brs(e1 — ca) = log (Fz'j(l‘z'l =c)/[1 — Fij(wi1 = Cl)]) |

Fij(xi1 = c2)/[1 — Fij(zi1 = c2]

e Unfortunately, you can't fit this model easily in the computer.
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Score Stat for Proportional Odds

® SAS gives the score test for all the (K x 1) vectors 3;’s being equal,

Ho:B81=02=..=08j_1=0

Under the null, there is one K x 1 vector 5, and under the alternative, there are
(J—1), K x 1 vectors 1, 32, ..., B7_1, SO the score statistic will have

df

# parameters in full model - # parameters in reduced model
(J—-1)K-K=(J—-2)K
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MLE'’s

e To write down the likelihood, note, we can write the original multinomial probabilities in
terms of the cumulative probabilities via:

pi; = (pir+...+pij)— i1+ ... +Dpij-1)

= by —Fija

® The likelihood is the product over the multinomial likelihoods (of sample size 1) for
individual:

J
L(aIBZHij yzj7
=1

e The overall likelihood is

L(avﬁ H H ng y”a

1=17=1
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Then, we obtain the MLE and use the inverse information to estimate its variance.
Can obtain the MLE in SAS Proc Logistic.

You can use likelihood ratio (or change in Deviance), Wald or score statistics for
hypothesis testing.

You can also use the Deviance as a goodness-of-fit statistic if the data are grouped
multinomial, meaning you have n; subjects with the same covariate values (and thus
the same multinomial distribution).

You can also use Pearson’s chi-square as a goodness-of-fit statistic.
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Example—Arthritis Clinical Trial

e The outcome is

( 1if very good at 13 weeks
2 if good at 13 weeks

Y, = ¢ 3iffair at 13 weeks

4 if poor at 13 weeks

. 5 if very poor at 13 weeks

® There are 4 cumulative probabilities created by default in SAS Proc Logistic (going
from lowest to highest):

F;1 = p;1 = prob very good
F;o = pi1 + pi2 = prob very good or good
F;3 = p;1 + pi2 + p;3 = prob very good, good, or fair

Fi4 = pi1 + pi2 + pi3 + pia = prob very good, good, fair, or poor
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® The modelis
logit(Fij) = a; + B1zi + BgpxSEXi+
BAGEAGE: + BTRTTRT:

where the covariates are age in years at baseline (AGE; ), sex (SEX;, 1=male,

O=female), treatment (TRT;, 1 = auranofin, 0 = placebo), and x; is baseline response
(treated as continuous, 1-5)
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e The main question is still whether the treatment increases the odds of a more
favorable response, after controlling for baseline response; secondary questions are
whether the response differs by age and sex.

e If you use the ‘descending’ option in Proc Logistic, you get the 4 cumulative
probabilities going from highest to lowest:

F;1 = pi5 = prob very poor
F;o = pi5 + p;4 = prob very poor or poor
F;3 = pi1 + pi2 + pi3 = prob very poor, poor, or fair

Fis = pi1 + pi2 + pi3 + pia = prob very poor, poor, fair, or good
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SAS Proc Logistic

The foll ow ng asci i

1

0
1
1
1

PRPRPPRPORPROOOR:

54
41
48
40
29

39
35
35
65
55
42
37
52
60
63

1

R OPRFRO

P OOOPRPROORFRPRERPE-

Is in the current directory, and called art?2. dat

WwwwbhH

AP WWWOPEWWWW-

1

2
2
2
2

AR WOWOWPRALAWOWWWWW:-
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[ = SAS STATEMENTS =/

DATA ARTH;
Infile "art2.dat’:
| nput SEX AGE TRT X vy;

proc | ogisti c;
nodel y = SEX AGE TRT
run;
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Dat a Set

Response Vari abl e

Nunmber of Response Levels

Model

Response Profile

Or der ed
Val ue

O~ wWNPRE

Y

A WDN PR

5

Count

38
93
103
49
10

WORK. ARTH

y
5

cunul ative | ogit

Probabilities nodel ed are cunul ated over the | ower O dered Val ues.

Score Test for the Proportional COdds Assunption

Chi - Square =

12.8763 with 12 DF (p=0.3781)
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Anal ysi s of Maxi mum Li kel i hood Esti nates

Par anet er St andard Wl d Pr >
Vari abl e DF Esti mat e Error Chi - Squar e Chi - Squar e
| NTERCP1 1 0. 9850 0. 6395 2.3727 0.1235
| NTERCP2 1 2.9290 0. 6531 20. 1114 0. 0001
| NTERCP3 1 4. 7706 0. 6904 47. 7450 0. 0001
| NTERCP4 1 6. 9144 0. 7677 81. 1098 0. 0001
SEX 1 0. 2648 0. 2416 1.2018 0.2730
ACGE 1 -0. 0165 0. 00978 2.8470 0. 0915
TRT 1 0. 6926 0. 2181 10. 0890 0. 0015
X 1 -0. 9190 0.1271 52. 2807 0. 0001
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Condi ti onal

Qdds
Vari abl e Rati o
| NTERCP1 2.678
| NTERCP2 18. 710
| NTERCP3 117. 992
| NTERCP4 999. 000
SEX 1. 303
AGE 0. 984
TRT 1.999
X 0. 399

Lower

OPr OO

. 765
. 201

30.
223.
. 812
. 965
. 304
. 311

491
549

Upper

9.

67.

456.

999.
2

1.
3.
0.

378
301
600
000
092
003
065
512

Qdds Rati o and 95% Confidence Limts

Lecture 21: Logit Models for Multinomial Responses Continued — p. 30/47



We see that the assumption of parallel lines (proportional odds) is not violated since
the test for proportional odds is not rejected:

Chi -Square = 12.8763 wth 12 DF (p=0.3781)
We interpret the results to mean that

1. Treatment (p = 0.0015) does significantly improve the response. Since the
treatment effect is approximately .69, being on auranofin tends to increase the odds of
response level 5 or lower (which means a better response), by exp(.69) = 2.0.

Comparison to earlier results
When we dichotomized Y earlier, we estimated 3:, = 0.7005 with exp(.7) = 2.015.

The estimated standard error was 0.3136 compared to the proportional odds estimate
of 0.2181

l.e., dichotomizing the outcome resulted in a loss of power for Hg : Btz = 0

but the parameter estimate is nearly identical (as expected under the proportional
odds model —i.e., same model regardless of cut point selection)
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e 2. Individuals with a better baseline status tend to have a better response at thirteen
weeks (p = 0.0001). Since the baseline effect is approximately -.92, a one unit
increase in the baseline response (say, from fair to poor), tends to decrease the odds
of response level j or lower (the better response), by exp(—.92) ~ .4

e 3. Older individuals seem to have a worse outcome than younger individuals
(p = 0.0915), although not significant at the .05 level),

e 4. SEX (p = 0.2730) is not significant.
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One more example

The data are reproduced from Lindsey (1995) and show the severity of pneumoconiosis as
related to the number of years working at a coal factory.

Pneumoconiosis
Years | Normal | Mild | Severe
0.5-11 98 0 0
12-18 51 2 1
19-24 34 6 3
25-30 35 5 8
31-36 32 10 9
37-42 23 7 8
43-49 12 6 10
50-59 4 2 5
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data |indsey;
i nput years $rep $year count @@
if rep eq 'sev’ then resp=' asever’;

else if rep eq mld then resp="bmld;

el se
| year
cards:

norm 15
norm 21
norm 27
norm 33
norm 39
norm 46
norm 51

O~NO O P WDN PP

run,

resp = 'normal ’;
= log(year);

norm5.75 98 1 mld 5.75 0 1 sev 5.75 0

51 2 mld 15 2 2 sev 15 1

.534 3 mld 21.5 6 3 sev 21.5 3
.5 35 4 mld 27.5 5 4 sev 27.5 8
.5 32 5 mld 33.5 10 5 sev 33.5 9
.5 236 mld 39.5 7 6 sev 39.5 8
12 7 mld 46 6 7 sev 46 10

.54 8 mld 51.5 2 8 sev 51.5 5
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proc | ogisti c;

wei ght count;

nodel resp = lyear / aggregate scal e=1;
run;

[+ Sel ected CQutput =/
Model | nfornation

Dat a Set WORK. LI NDSEY
Response Vari abl e resp

Nunmber of Response Levels 3

Nunmber of Cbservations 22

Wei ght Vari abl e count

Sum of Wi ghts 371

Model cunul ative | ogit

Optim zati on Techni que Fi sher’ s scoring
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Selected Output

Response Profile

Or der ed Tot al Tot al
Val ue resp Frequency Wi ght

1 asever 4 44, 00000

2 bm | d 7 38. 00000

3 nor mal 8 289. 00000

Probabilities nodel ed are cunul ated over the | ower O dered Val ues.

NOTE: 2 observations having zero frequencies or wei ghts were excl uded si nce
contribute to the anal ysis.
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Score Test for the Proportional CGdds Assunption
Chi - Squar e DF Pr > Chi Sq
0. 1387 1 0. 7096

Devi ance and Pearson Goodness-of-Fit Statistics

Criterion Val ue DF Val ue/ DF Pr > Chi Sq
Devi ance 5. 0007 13 0. 3847 0. 9752
Pear son 4. 6806 13 0. 3600 0. 9816

Nunber of unique profiles: 8

For this data, we have good justification for the null hypothesis of proportional odds
assumption and that our model fits the data well. However, we have some indication that our
model is predicting greater variability than what was observed.
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Anal ysi s of Maxi mum Li kel i hood Esti nmates

Par anet er DF Estimate
| nt ercept asever 1 -10. 5728
| ntercept bmld 1 -9. 6672
| year 1 2.5943

Odds Rati o Esti mates

Poi nt 95% \Wal d
Confidence Limts

Ef f ect Esti mat e

| year 13. 387 6. 340

St andar d Wal d

Error Chi - Squar e Pr > Chi Sq

1. 3463 61. 6776 <. 0001
1. 3249 53. 2392 <. 0001
0. 3813 46. 2850 <. 0001

28. 268
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Thus, our estimated logs are

Severe
dd = —10.5728 + 2.5943I
e (Mild or Normal) exp( i year)

and

Severe or Mild
odds (

) = exp(—9.6672 + 2.5943lyear)
Normal

Or, for a person working for 20 years

Severe
dd — exp(—10.5728 + 2.5943 - In(20)) = 0.059
e (Mild or Normal) exp( T n(20))

and

Severe or Mild
odds (

— —9.6672 4+ 2.5943 - In(20)) = 0.143
Normal ) exp( + n(20))
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Therefore,
1. Approximately 6% (0.059/(1+0.059)) or 1 in 18 miners working for 20 years is expected
to develop severe pneumoconiosis

2. Approximately 13% or roughly 1 in 8 miners working for 20 years is expected to
develop severe or mild pneumoconiosis
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The adjacent categories logit

e Recall, for individual z, we had the covariate vector x;,

® Suppose we look at categories j and 5 + 1, and we condition on the response being in
one of these two categories

pi; = PlYiy=1Yi+Yij 11 =1,x]

PlY; ;=1|x;]
PlY; i =1X; ]+ P[Y; j41=1[X;]

Pij
Pij+DPi,j+1
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Then, consider the logit of being in category ;5 (given that the response is category j or
Jj+1).

: o
|Og|t(p;<j) = log (1_;:7)

.. "—|-p' . 1]
- 1] ( pij/[Pij+pi i+ )
08 Pi j+1/[Pij+tPi j4+1]

_ Pij
= log (Pi,j+1 )

Suppose we model this logit with

logit(p},) = log(&)

Pi,j41

= Oy +/B/Xi7

foryj=1,...,J — 1.
Note, 3 is the same for all j.
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What is the interpretation of an element of the vector 3, (assuming it is a scalar)

As was the case with ordinary logistic regression, (3 is the log- odds ratio for response
7 versus j + 1 when the covariate x is increased by one unit.

The logistic model says that the log-odds ratio for going from category j to 5 + 1 is the

same as going from category j’ to 5/ + 1, i.e., adjacent categories have the same
log-odds ratio.

The ordering is taken into account, because categories d levels apart, i.e., d = j' — 7,
have log-odds ratio equal to

dg.
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For example, suppose we look at j and j — 2 :
For category 5 — 1 and j

log (M) = a1+ B/Xi,
Pij

For category j —2and j — 1,,

log (M) — Q{j_2 + /B/Xi,
Pij—1
Then,
Pi,j—2 _ Pi,j—1 Pi,j—2
log ( Pij ) = log ( Pij ) +log (Pz‘,j—l)
= “after a little algebra”
= |aj—1+ 0'%] + [oj—2 + B'xi]

= oj—1+aj2] +[28]x

Then, odds ratio for responses two levels apart is

/
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® In general, the adjacent categories logit is a special case of the polytomous logistic (so
you can use a polytomous logistic regression package):

e Recall, the J — 1 logits for polytomous logistic regression uses the last level J as
reference:

Pij .
o8 <p-i> = [aj + o Fag_1 4+ (J = 5)B'%].

® In terms of interpretation and implementation, you do better to use the baseline
category model or the proportional odds model
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Pictures of the estimated response profiles

data esti mat ed;
do lyear = 1.5 to 6.0 by 0.001;

nod = "Severe v. MIld or Normal";
prob = exp(-10.5728 + 2.5943* lyear)/ (l+exp(-10.5728 + 2.5943+ |year));
out put ;

nod="Severe or MId v. Nornmal";

prob = exp(-9.6672 + 2.5943+ lyear)/ (1l+exp(-9.6672 + 2.5943* |year));
out put ;
end;

run;

proc gpl ot dat a=esti nat ed;
plot prob * |year =nod;
run;
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mod

+ + 1 Severe or Nild v.

Iyear

Normal

+ + + Severe v.

Mild or Normal
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