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What is a multinomial response?

• Let Y be a categorical response with J categories

• These J categories may be

1. Nominal – Example: race with 1=white, 2=african american, 3=..., etc.

2. Ordinal – Example: satisfaction rating with 1=very poor, ... 5 = very pleased

• When J = 2, we have our ordinary logistic regression model

• We desire a model to estimate multinomial responses in a manner similar to the
logistics models we have developed

• We also want to summarize all of the

 

J

2

!

possible odds ratios using the J − 1

non-redundant ORs (as we described previously)

• Some texts and statisticians refer to the nominal models as polytomous logit models
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Generalized Odds Ratio

• Recall from Lecture 8 (Contingency Table Extensions) -

• For the 2 × 2 table, a single measure can summarize the association.

• For the general I × J case, a single measure cannot summarize the association
without loss of information.

Note: “Loss of information” can be obtained by collapsing the categories into a 2 × 2
structure.
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The MI Example

Agresti Table 2.1 - Page 37

Myocardial Infarction
Fatal Attack Nonfatal Attack No Attack

Placebo 18 171 10845
Aspirin 5 99 10933

We want to estimate the association of Aspirin Use on MI.
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Collapsed Categories

We could collapse the Fatal Attack and Nonfatal Attack categories together to obtain

Myocardial Infarction
Fatal Attack or No
Nonfatal attack Attack

Placebo 189 10845

Aspirin 104 10933

Then, the OR of having a MI is

ORMI = 189∗10933
104∗10845

= 1.83

Thus, the odds of a MI are 1.83 times higher when taking placebo when compared to aspirin.
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Generalized Odds Ratio

• There are

 

I

2

!

pairs of rows

• and

 

J

2

!

pairs of columns

• that can produce

 

I

2

! 

J

2

!

estimates of the odds ratio

• We are going to consider three cases for the generalized odds ratio
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Case 1: Arbitrary row and column

For rows a and b and columns c and d, the odds ratio (πacπbd/πbcπad) is the most loosely
defined set of generalizes ORs.

There are

 

I

2

! 

J

2

!

of this type.

For our example, lets compare Fatal MI to No MI.

ORfatal vs. No MI =
18 ∗ 10933

5 ∗ 10845
= 3.63

That is, the odds of a having a fatal MI vs No MI are 3.63 times higher for the Placebo group
when compared to the group taking Aspirin.
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Case 2: Local ORs

The local ORs are obtained by comparing adjacent rows and columns.

That is,

ORij =
πijπi+1,j+1

πi+1,jπi,j+1

For our example, we could obtain 2 local ORs

1. Fatal MI vs. Non Fatal MI (OR = (18 · 99)/(5 · 171) = 2.08)

2. Non Fatal MI vs. No MI (OR = (171 · 10933)/(99 · 10845) = 1.74)

Note: There are (I − 1)(J − 1) local odds ratio.
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Case 3: Last Column (Reference) OR

For the I × J table with I representing the last row and J representing the last column, then

αij =
πijπIJ

πIjπiJ
, i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1

represents the OR obtained by referencing the last row and last column. For our example,

1. α11 = (18 ∗ 10933)/(5 ∗ 10933) = 3.62

2. α12 = (171 ∗ 10933)/(99 ∗ 10845) = 1.74
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Summary of Generalized Methods

• Here, we have focused on an arbitrary I × J table

• Just as logistic regression extended the OR for a binary outcome with several
predictors

• Multinomial logistic regression will extend the OR estimation for the three cases
presented previously to multiple predictors.
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• In general, suppose the response for individual i is discrete with J levels:

Yi =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1 if with prob. pi1

2 if with prob. pi2

.

.

.

J if with prob. piJ

.

• Let xi be the covariates for individual i. If Yi is binary J = 2, we usually use a logistic
regression model

P [Yi = 1|xi1, ..., xiK ] =
eβ0+β1xi1+...+βKxiK

1 + eβ0+β1xi1+...+βKxiK

and we model the logit:

log

»

P [Yi = 1|xi1, ..., xiK ]

P [Yi = 2|xi1, ..., xiK ]

–

= β0 + β1xi1 + ... + βKxiK

Usually, we think of assigning Yi = 2, the value ‘0’.
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Polytomous (or Multinomial) Logistic regression

• When J = 2, we form J − 1 = 1, non-redundant logits.

• When J > 2, we often use Polytomous (or Multinomial) Logistic regression, forming
J − 1 non-redundant logits:

log

»

P [Yi = 1|xi1, ..., xiK ]

P [Yi = J |xi1, ..., xiK ]

–

= β10 + β11xi1 + ... + β1KxiK = β′

1xi

log

»

P [Yi = 2|xi1, ..., xiK ]

P [Yi = J |xi1, ..., xiK ]

–

= β20 + β21xi1 + ... + β2KxiK = β′

2xi

. . .

log

»

P [Yi = j|xi1, ..., xiK ]

P [Yi = J |xi1, ..., xiK ]

–

= βj0 + βj1xi1 + ... + βjKxiK = β′

jxi

. . .

log

»

P [Yi = J − 1|xi1, ..., xiK ]

P [Yi = J |xi1, ..., xiK ]

–

= βJ0 + βJ1xi1 + ... + βJKxiK = β′

J xi
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• Note, each one of these logits can have a different set of parameters βj .

• Basically, we can think of the jth logit

log

»

P [Yi = j|xi1, ..., xiK ]

P [Yi = J |xi1, ..., xiK ]

–

= β′

jxi,

as a usual logistic regression model when restricting yourself to categories j and J.

• Here, we have formulated the “last column (reference)” definition of the generalized
OR.
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• Now, we want to write the probabilities

pij = P [Yi = j|xi1, ..., xiK ], j = 1, ..., J,

in terms of the parameters and covariates.

• Recall, when J = 2, we write

pi1 =
exp[β′xi]

1 + exp[β′xi]

and

pi2 =
1

1 + exp[β′xi]

• We need to generalize this probability formulation when J > 2
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• For now, consider the following definitions of pij ,

pij =
exp[β′

jxi]

1 +
PJ−1

j=1 exp[β′

jxi]

when j < J,

and

piJ =
1

1 +
PJ−1

j=1 exp[β′

jxi]

when j = J

• We know,
P

j∈J
pij = 1
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• Using the proposed definitions

PJ
j=1 pij =

J−1
P

j=1
pij + piJ

=
PJ−1

j=1

„

exp[β′

jxi]

1+
PJ−1

j=1
exp[β′

j
xi]

«

+ 1

1+
PJ−1

j=1
exp[β′

j
xi]

=

PJ−1

j=1
exp[β′

jxi]

1+
PJ−1

j=1
exp[β′

j
xi]

+ 1

1+
PJ−1

j=1
exp[β′

j
xi]

=
1+

PJ−1

j=1
exp[β′

jxi]

1+
PJ−1

j=1
exp[β′

j
xi]

= 1

• So, our proposed definitions are consistent with a proper probability distribution

• Now, we shall derive the probabilities.
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Proof

• Now, consider

log

»

pij

piJ

–

= β′

jxi

exponentiating both sides, we get

pij

piJ
= exp[β′

jxi],

which is the odds for category j versus category J .

• Multiplying both sides by piJ , we obtain

pij = piJ exp[β′

jxi],

• Now, suppose we sum both sides over j = 1, ..., J − 1, we get

J−1
X

j=1

pij = piJ

J−1
X

j=1

exp[β′

jxi],
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• Note, though

piJ +

J−1
X

j=1

pij =
J
X

j=1

pij = 1,

i.e.,
J−1
X

j=1

pij = 1 − piJ

so

1 − piJ = piJ

J−1
X

j=1

exp[β′

jxi],
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• Then,

1 = piJ + piJ
PJ−1

j=1 exp[β′

jxi]

= piJ (1 +
PJ−1

j=1 exp[β′

jxi]),

• Or, finally

piJ =
1

1 +
PJ−1

j=1 exp[β′

jxi]

and, since
pij = piJ exp[β′

jxi],

substituting in piJ , we obtain

pij =
exp[β′

jxi]

1 +
PJ−1

j=1 exp[β′

jxi]
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Interpretation

• It was shown above that the log-odds for category j versus J for covariates
(xi1, ..., xiK) is

log

»

pij

piJ

–

= βj0 + βj1xi1 + ... + βjkxik + ... + βjKxiK ,

• We want to know the interpretation of the βjk ’s

• Now, suppose we have two individuals, i and i′ with the same values of all the
covariates, except that

xi′k = xik + 1.

i.e., all covariates are the same, but the kth covariates are one unit apart.

• Then, the log-odds for subject i is

log

»

pij

piJ

–

= βj0 + βj1xi1 + ... + βjkxik + ... + βjKxiK ,

and for subject i′ is

log

»

pi′j

pi′J

–

= βj0 + βj1xi1 + ... + βjk(xik + 1) + ... + βjKxiK ,
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• Then, subtracting

log

»

pij

piJ

–

from

log

»

pi′j

pi′J

–

,

we obtain

log

»

pi′j/pi′J

pij/piJ

–

= βjk,

i.e.,
βjk

is the ‘log-odds ratio’ for response j versus J for a one unit increase in covariate xik.
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• We have just looked at response j versus J

• Using the MI example, β11 would be the log-odds of having a fatal MI instead of no MI
for subjects on placebo when compared to subjects on aspirin.

• Similarly, β12 is the log-odds of having a non-fatal MI instead of a fatal MI

• Previously, we stated that this model sufficiently describes all possible
((I − 1) × (J − 1)) ORs

• Therefore, we should be able estimate the odd ratio for an arbitrary response j versus
j′.

Lecture 20: Logit Models for Multinomial Responses – p. 22/53



• Now, suppose we want the ‘log-odds ratio’ for response j′ versus j for a one unit
increase in covariate xik :

log

»

pi′j′/pi′j

pij′/pij

–

= log

»

pi′j′/pi′J

pij′/piJ

–

− log

»

pi′j/pi′J

pij/piJ

–

= [βj′k − βjk]

• Then
[βj′k − βjk]

is the ‘log-odds ratio’ for response j′ versus j for a one unit increase in covariate xik.
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Estimation Using Proc Logistic

To estimate the ORs for the MI data using PROC LOGISTIC, we can use the following:
data mi;
input x mi count;
cards;

1 1 18
1 2 171
1 3 10845
0 1 5
0 2 99
0 3 10933
;
run;
proc logistic;
model mi = x /link=glogit; <--- glogit = generalized logit

which is our last category
referecne

freq count;
run;
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Selected Results

Response Profile

Ordered Total
Value mi Frequency

1 1 23
2 2 270
3 3 21778

Logits modeled use mi=3 as the reference category.

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter mi DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 -7.6896 0.4472 295.6688 <.0001
Intercept 2 1 -4.7044 0.1010 2171.3642 <.0001
x 1 1 1.2885 0.5056 6.4947 0.0108
x 2 1 0.5546 0.1270 19.0675 <.0001
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• In terms of the model,

log
h

pi1

pi3

i

= β10 + β11xi1

= −7.6896 + 1.2885xi1

and

log
h

pi2

pi3

i

= −4.7044 + 0.5546xi1

where xi1 = 1 if treated with placebo, 0 else.
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Agresti Table 2.1 - Page 37

Myocardial Infarction
Fatal Attack Nonfatal Attack No Attack

Placebo 18 171 10845
Aspirin 5 99 10933

• Recall, we previously calculated the last category ORs to be

1. α11 = (18 ∗ 10933)/(5 ∗ 10933) = 3.62

2. α12 = (171 ∗ 10933)/(99 ∗ 10845) = 1.74

Odds Ratio Estimates
Point 95% Wald

Effect mi Estimate Confidence Limits

x 1 3.627 1.347 9.771
x 2 1.741 1.358 2.233

• We see that PROC LOGISTIC has estimated the same values

• Note e1.2885 = 3.627 which is what is presented above in the “Odds Ratio Estimates”
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The odds of having a fatal attack instead of a nonfatal attack is estimated to be

OR =
18 · 99

5 · 171
= 2.08

Or from our logistic regression model

log(OR) = β11 − β12

= 1.2885 − 0.5546

= 0.7345

OR = exp(0.7345)

= 2.08
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Maximum Likelihood Using the Multinomial

• To write down the multinomial likelihood, we form J indicator random variables (J − 1

of which are non-redundant).

Yij =

(

1 if Yi = j

0 if otherwise
,

j = 1, ..., J

• Maximum likelihood can be used to estimate the parameters of these models, i.e.,
maximize

L(β) =
n
Y

i=1

J
Y

j=1

p
yij

ij ,

as a function of β = [β′

1, β′

2, ..., β′

J ]′

Lecture 20: Logit Models for Multinomial Responses – p. 29/53



• Then, we obtain the MLE and use the inverse information to estimate its variance.

• Can obtain the MLE in SAS Proc Catmod or Proc Logistic.

• CATMOD is a general modeling PROC that can be used to fit data that can be grouped
into a contingency table (i.e, discrete with relatively few levels)

• You can use likelihood ratio (or change in Deviance), Wald or score statistics for
hypothesis testing.

• You can also use the Deviance as a goodness-of-fit statistic if the data are grouped
multinomial, meaning you have nj subjects with the same covariate values (and thus
the same multinomial distribution).
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Example–Primary Food Choice of Alligators

• We are interested in examining the relationship of
1. Lake:

Xi =

8

>

>

>

<

>

>

>

:

1 if Hancock
2 if Oklawaha
3 if Trafford
4 if George

.

2. GENDER (1 if male, 0 if female)
3. SIZE (1 if ≤ 2.3, 0 if > 2.3)

• On the choice of food

Yi =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if fish
2 if invertebrate
3 if reptile
4 if bird
5 if other

.

• Presented in Agresti Page 269

• We want to work to reproduce some of Table 7.2 on pg. 269
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Model 1: Intercept Only Model

data one;
input lake gender size food count;
cards;

1 1 1 1 7
1 1 1 2 1
1 1 1 3 0
1 1 1 4 0
1 1 1 5 5
1 1 0 1 4
1 1 0 2 0
1 1 0 3 0
1 1 0 4 1
1 1 0 5 2
1 0 1 1 16
... (more data here)
4 0 0 4 0
4 0 0 5 1

Lecture 20: Logit Models for Multinomial Responses – p. 32/53



proc logistic;
model food(ref=’1’) = /

LINK=GLOGIT
aggregate=(lake size gender) scale=1;

freq count;
run;

• Note, we are creating the J multinomials by looking at unique combinations of lake,
size and gender

• This happens to be the way we entered the data

• But, as you can see above, you do not have to estimate a parameter for each to
aggregate on them
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Selected Results

Response Profile

Ordered Total
Value food Frequency

1 1 94
2 2 61
3 3 19
4 4 13
5 5 32

Logits modeled use food=1 as the reference category.

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 116.7611 60 1.9460 <.0001
Pearson 106.4922 60 1.7749 0.0002

Number of unique profiles: 16
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter food DF Estimate Error Chi-Square Pr > ChiSq

Intercept 2 1 -0.4324 0.1644 6.9173 0.0085
Intercept 3 1 -1.5989 0.2515 40.4037 <.0001
Intercept 4 1 -1.9783 0.2959 44.6984 <.0001
Intercept 5 1 -1.0776 0.2047 27.7197 <.0001
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Examine effect of gender

• Since the data are so sparse, we want to see if we can collapse some of the data

• Biologically and ecologically, size of gator and location seem to be important predictors

• Gender, on the other hand, may not be an important characteristic

• To test for the significance of gender, consider the following two models

1. Gender only compared to intercept only

2. Gender, Lake and Size compared to only lake and size

• We will calculate change in deviance to assess fit

Lecture 20: Logit Models for Multinomial Responses – p. 36/53



Model 1: Gender Only

proc logistic;
class lake size gender;

model food(ref=’1’) = gender/
LINK=GLOGIT
aggregate=(lake size gender) scale=1;

freq count;
run;

• Note: we are still aggregating over lake size and gender
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Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 114.6571 56 2.0474 <.0001
Pearson 101.2480 56 1.8080 0.0002

• The change in deviance is

∆D2 = 116.76116∗ − 114.6571 = 2.104

on 60 − 56 = 4df

• p−value = 0.72

• So we have evidence that βgender = 0

•
∗ 116.8 is the deviance for the model with intercept only presented earlier

• df = 4 is because we would estimate 1 gender effect for the 5 − 1 levels of food choice
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Model 2

• Similarly, fitting these two models

proc logistic;
class lake size gender;
model food(ref=’1’) = lake size gender/

LINK=GLOGIT
aggregate=(lake size gender) scale=1;

freq count;
run;

proc logistic;
class lake size gender;
model food(ref=’1’) = lake size /

LINK=GLOGIT
aggregate=(lake size gender) scale=1;

freq count;
run;

• Can also assess the significance of gender

Lecture 20: Logit Models for Multinomial Responses – p. 39/53



Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Model with Lake Size and Gender

Deviance 50.2637 40 1.2566 0.1282

Model lake and Size

Deviance 52.4785 44 1.1927 0.1784

With
∆D2 = 52.4785 − 50.2637 = 2.2148

p−value=0.70

Both models indicate that Gender is not a significant predictor
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• If this were an ordinary regression model, we would just “throw away” gender and
estimate the following model

proc logistic;
class lake size;
model food(ref=’1’) = lake size /

LINK=GLOGIT
aggregate=(lake size gender) scale=1;

freq count;
run;

• However, what we want to collapse the tables on Gender to increase our cell sizes

• I’ll show two approaches to this
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The Hard Way

• The hard way is to collapse the data across Gender

• Essentially, we want the marginal “table” that results from summing across gender

• Since we still have lake, size and food choice, our “table” has 4 dimensions
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Using PROC SQL

• A very useful tool for collapsing data over variables is PROC SQL

• The following code will collapse (or sum the counts) the data over lake, size and food
choice

proc sql;
create table nogender as

select lake, size, food, sum(count) as count
from one
group by lake,size,food;

run;
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proc print data=nogender;
run;

Obs lake size food count
1 1 0 1 7
2 1 0 2 0
3 1 0 3 1
4 1 0 4 3
5 1 0 5 5
6 1 1 1 23
7 1 1 2 4
8 1 1 3 2
9 1 1 4 2
10 1 1 5 8

...

• Recall, there were previously 4 males and 3 females (or 7) gators living in lake 1,
eating fish (food=1) that were > 2.3 (size =0)

• Note, we have summed out the effects of gender
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Fitting without Gender

proc logistic data=nogender;
class lake size;
model food(ref=’1’) = lake size /

link = glogit
aggregate scale=1;

freq count;
run;

• Note, I have changed the dataset and modified the aggregate option

• Since the factors to aggregate on are not specified, it uses the covariates in the model
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Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 17.0798 12 1.4233 0.1466
Pearson 15.0429 12 1.2536 0.2391

Number of unique profiles: 8

• Note, number of unique profiles is now 8 (4 lakes times 2 sizes)

• Previously, number of unique profiles equalled 16 (4 lakes, 2 sizes, 2 genders)

• Now, lets consider the easy approach
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• Lets go back to “data one” . . . the one with gender unaggregated

• To collapse over gender, all we need to do is aggregate over just lake and size

proc logistic data=one;
class lake /param=ref;
model food(ref=’1’) = lake size /

LINK=GLOGIT
aggregate= (lake size) scale=1;

freq count;
run;

• This will produce exactly the same model as before, except that I have changed the
dummy variable coding to be reference coding

• I also took size out of the class statement so that we would be estimating the same
model as Agresti

• Goodness of Fit statistics are unaffected by variable coding convention
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Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 17.0798 12 1.4233 0.1466
Pearson 15.0429 12 1.2536 0.2391

Number of unique profiles: 8

Now, we will examine the parameter estimates.
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Parameter Estimates

Standard Wald
Parameter food DF Estimate Error Chi-Square Pr > ChiSq
Intercept 2 1 -1.5490 0.4249 13.2890 0.0003
Intercept 3 1 -3.3139 1.0528 9.9081 0.0016
Intercept 4 1 -2.0931 0.6622 9.9894 0.0016
Intercept 5 1 -1.9043 0.5258 13.1150 0.0003
lake 1 2 1 -1.6583 0.6129 7.3216 0.0068
lake 1 3 1 1.2422 1.1852 1.0985 0.2946
lake 1 4 1 0.6951 0.7813 0.7916 0.3736
lake 1 5 1 0.8262 0.5575 2.1959 0.1384
lake 2 2 1 0.9372 0.4719 3.9443 0.0470
lake 2 3 1 2.4583 1.1179 4.8360 0.0279
lake 2 4 1 -0.6532 1.2021 0.2953 0.5869
lake 2 5 1 0.00565 0.7766 0.0001 0.9942
lake 3 2 1 1.1220 0.4905 5.2321 0.0222
lake 3 3 1 2.9347 1.1161 6.9131 0.0086
lake 3 4 1 1.0878 0.8417 1.6703 0.1962
lake 3 5 1 1.5164 0.6214 5.9541 0.0147
size 2 1 1.4582 0.3959 13.5634 0.0002
size 3 1 -0.3513 0.5800 0.3668 0.5448
size 4 1 -0.6307 0.6425 0.9635 0.3263
size 5 1 0.3316 0.4483 0.5471 0.4595
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Thus, the estimated model for estimating the log(odds) of an alligator eating invertebrate
animals instead of fish would be

log(πinv/πfish) = -1.5490 + 1.4582 Size -1.6583 lake 1
0.9372 lake 2 + 1.1220 lake 3

Thus, in a given lake (or controlling for the effects of lake), the estimated odds that primary
food choice was invertebrates instead of fish for small alligators (≤ 2.3) are
exp(1.4582) = 4.3 times the estimated odds for large alligators.
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Odds Ratio Summary

Odds Ratio Estimates

Point 95% Wald
Effect food Estimate Confidence Limits

lake 1 vs 4 2 0.190 0.057 0.633
lake 1 vs 4 3 3.463 0.339 35.343
lake 1 vs 4 4 2.004 0.433 9.266
lake 1 vs 4 5 2.285 0.766 6.814
lake 2 vs 4 2 2.553 1.012 6.437
lake 2 vs 4 3 11.685 1.306 104.508
lake 2 vs 4 4 0.520 0.049 5.490
lake 2 vs 4 5 1.006 0.219 4.608
lake 3 vs 4 2 3.071 1.174 8.032
lake 3 vs 4 3 18.815 2.111 167.717
lake 3 vs 4 4 2.968 0.570 15.447
lake 3 vs 4 5 4.556 1.348 15.400
size 2 4.298 1.978 9.339
size 3 0.704 0.226 2.194
size 4 0.532 0.151 1.875
size 5 1.393 0.579 3.354
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Summary

• We see that the odds of eating invertebrates instead of fish are higher for lakes 2 and 3
when compared to lake 4, but in lake 1, alligators of either size are less likely to eat
invertebrates

• This could be because there are more fish in lake 1 or the alligators in lake 1 somehow
prefer the taste of fish to the invertebrates.

• We see that small alligators prefer invertebrates and “other” instead of fish, after
controlling for lakes

• Where as the odds of a larger alligators preferring reptile or birds are higher than for
small alligators

• Here, food preference is likely a function of hunting ability . . . alligators that can catch
(and swallow) birds are likely more experienced hunters and older (thus larger)
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Recap

• When assessing nested goodness of fit, you need to consider your nj multinomials

• Keep your aggregate function consistent so that your models are properly nested

• Once you decide to eliminate a parameter, you may adjust you aggregate appropriately

• This model is commonly called the Baseline Category model

• It is used for NOMINAL OUTCOMES

• We will examine a simplification of this model for ordinal outcomes in the next lecture.
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