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Conditional Logistic Regression

Purpose

1. Eliminate unwanted nuisance parameters

2. Use with sparse data

Prior to the development of the conditional likelihood, lets review the unconditional (regular)
likelihood associated with the logistic regression model.

• Suppose, we can group our covariates into J unique combinations

• and as such, we can form J (2 × 2) tables
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First, consider the jth (2 × 2) table:

TABLE j (or stratum ‘W = j’)

Variable (Y )

1 2

1
Variable (X)

2

Yj11 Yj12 Yj1+

Yj21 Yj22 Yj2+

Yj+1 Yj+2 Yj++
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We can write the (2 × 2) data table of probabilities for stratum W = j as

Y

1 2
1 pj1 1 − pj1 1

X

2 pj2 1 − pj2 1
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Unconditional Likelihood

• Let pj be the probability that a subject in stratum j has a success.

• Then the probability of observing yj events in stratum j is

P (Yj = yj) =

 
nj

yj

!
p

yj

j (1 − pj)
nj−yj

• However, we know pj is a function of covariates

• Without loss of generality, assume we are interested in two covariates, xj1 and xj2,
such that

pj =
eβ0+β1xj1+β2xj2

1 + eβ0+β1xj1+β2xj2
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Then, the likelihood function can be written as

L(~y) =
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• The functions t0, t1, and t2 are sufficient statistics for the data.

• Suppose we want to test β2 = 0 using a likelihood ratio test.

• Then

L(β0, β1) =
eβ0t0+β1t1
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• and the LRT would equal

Λ(~y) = −2(lnL(β0, β1) − ln(L(β0, β1, β2)))

= −2ln
L(β0,β1)
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• Which is distributed approximately chi-square with 1 df .
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• When you have small sample sizes, the chi-square approximation is not valid.

• We need a method to calculate the exact p−value of H0 : β2 = 0 from the exact null
distribution of Λ(~y).

• Note that the distribution of Λ(~y) depends on the exact distribution of ~y.

• Thus, we need to derive the exact distribution of ~y.
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Under, H0, β2 = 0, so we will begin with

P (~y) = L(β0, β1) =
eβ0t0+β1t1

JQ
j=1

`
1 + eβ0+β1xj1

´nj

×
JY

j=1

 
nj

yj

!

• We cannot use the above probability statement because it relies on the population
parameters (i.e., unknown constants) β0 and β1.

• That is, β0 and β1 are a nuisance to our calculations and as such are called nuisance
parameters

• Similar to what we did in the Fisher’s Exact Test, we are going to condition out β0 and
β1
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Using Bayes’ Law,

P (~y|t0, t1) =

eβ0t0+β1t1
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where Γ is the set of all vectors of y such that

JX

j=1

yj = t0
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yjx1j = t1

and 0 ≤ yj ≤ nj and yj is an integer.
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Then, P (~y|t0, t1) can be simplified to

P (~y|t0, t1) =
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which does not contain any unknown parameters and we can calculate the exact p−value.
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Let λ by any value such that Λ(~y) = λ and denote

Γλ = {~y : ~y ∈ Γ and Λ(~y) = λ}

Then

P (Λ(~y) = λ) =
X

~y∈Γλ

P (~y|t0, t1)

To obtain the exact p−value for testing β2 = 0 we need to:

1. Enumerate all values of λ

2. Calculate P (Λ(~y) = λ)

3. p−value equals the sum of the as extreme or more extreme values of P (Λ(~y) = λ)

Or use SAS PROC LOGISTIC or LogXact
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Example–Mantel (1963)

• Effectiveness of immediately injected penicillin or 1.5 hour delayed injected penicillin in
protecting against β−hemolytic Streptococci:

Penicillin RESPONSE
Level DELAY Died Cured

1/8 None 0 6
1.5 hr 0 8

1/4 None 3 3
1.5 hr 1 6

1/2 None 6 0
1.5 hr 2 4

1 None 5 1
1.5 hr 6 0

4 None 2 0
1.5 hr 5 0
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• Note, there are many 0 cells in the table; may have problems with the large sample
normal approximations.

• We want to estimate the (common) OR between Delay and Response, given strata
(Penicillin).

• We can consider the data as arising from J = 5, (2 × 2) tables, where J = 5 penicillin
levels.

• In the kth row of (2 × 2) table j, we assume the data have the following logistic
regression model:

logit (P [Cured|penicillin=j, DELAYk]) =

µ + αj + βDELAYk,

where

DELAYk =

(
0 if none
1 if 1.5 hours

.

• There are problems with the unconditional (usual) MLE, as we’ll see in the computer
output.
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• This is equivalent to the logistic model

logit{P [Cured|penicillin=j, DELAY]} =

µ + α1z1 + ... + α4z4 + βDELAYk,

where

zj =

(
1 if penicillin=j

0 if otherwise
.

• Note, we have not taken the ordinal nature of penicillin into account

• We are considering penicillin (and the associated dose) as a nuisance parameter and
are not interested in drawing inference about penicillin

• We are interested in learning about the timing to give any dose of penicillin
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SAS Proc Logistic

• Using SAS Proc Logistic, we get the following results:

data cmh;
input pen delay response count;
cards;
0.125 0 0 0 /* response: 1 = cured, 0 = died */
0.125 0 1 6 /* delay: 0 = none, 1 = 1.5 hrs */
0.125 1 0 0
0.125 1 1 8
0.250 0 0 3
0.250 0 1 3
0.250 1 0 1
0.250 1 1 6
0.500 0 0 6
0.500 0 1 0
0.500 1 0 2
0.500 1 1 4
1.000 0 0 5
1.000 0 1 1
1.000 1 0 6
1.000 1 1 0
4.000 0 0 2
4.000 0 1 0
4.000 1 0 5
4.000 1 1 0
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proc logistic descending;
class pen(PARAM=ref);
model response = pen delay ;
freq count;

run;

/* SELECTED OUTPUT */
Model Convergence Status

Quasi-complete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.
WARNING: The LOGISTIC procedure continues in spite of the above warning.
Results shown are based on the last maximum likelihood iteration. Validity
the model fit is questionable.
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Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -13.7143 163.8 0.0070 0.9333
pen 0.125 1 25.1650 199.4 0.0159 0.8996
pen 0.25 1 13.6947 163.8 0.0070 0.9334
pen 0.5 1 11.9500 163.8 0.0053 0.9419
pen 1 1 10.0640 163.8 0.0038 0.9510
delay 1 1.8461 0.9288 3.9508 0.0468

WARNING: The validity of the model fit is questionable.

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

pen 0.125 vs 4 >999.999 <0.001 >999.999
pen 0.25 vs 4 >999.999 <0.001 >999.999
pen 0.5 vs 4 >999.999 <0.001 >999.999
pen 1 vs 4 >999.999 <0.001 >999.999
delay 6.335 1.026 39.115
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Possible remedies

There are (at least) two possible remedies to this problem:

1. Assign a score wj to penicillin level j and use this with logistic regression, or

2. Since we are interested in

β = log(ORRESPONSE,DELAY),

an alternative is to eliminate the nuisance parameters (the effects of PENICILLIN
LEVEL) by using conditional logistic regression.
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Assigning Scores

Revised data step:
data cmh;
/* delay = 0 if None, 1 if 1.5 hr */
/* response = 1 if Cured, 0 if Died */
input pen delay response count;
if pen = 0.125 then pen1 = 1; else pen1=0;
if pen = 0.250 then pen2 = 1; else pen2=0;
if pen = 0.500 then pen3 = 1; else pen3=0;
if pen = 1.000 then pen4 = 1; else pen4=0;
pen_cont = pen;
cards;
... (same as before)

proc logistic descending;
model response = pen_cont delay /aggregate scale=1;
freq count;

run;
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Selected Results

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 2.2328 0.8051 7.6910 0.0055
pen_cont 1 -6.8591 1.9781 12.0238 0.0005
delay 1 1.6984 0.8623 3.8792 0.0489

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

pen_cont 0.001 <0.001 0.051
delay 5.465 1.008 29.620

Note: This model converged
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Approach 2 - Elimination of Nuisance Parameters

• For the prospective study we have, the rows (yj1+ and yj2+) of each (2 × 2) table are
fixed, and we have two independent binomials:
1) Row 1:

Yj11 ∼ Bin(yj1+, pj1),

where
pj1 = P [Cured|penicillin=j, DELAY = 1]

and
2) Row 2:

Yj21 ∼ Bin(yj2+, pj2),

where
pj2 = P [Cured|penicillin=j, DELAY = 0]
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• In terms of the logistic model,

logit (P [Cured|penicillin=j, DELAY = 1]) =

logit(pj1) = µ + αj + β,

and

logit (P [Cured|penicillin=j, DELAY = 0]) =

logit(pj2) = µ + αj

• Then the log-odds ratio for the jth, (2 × 2) table is

log
pj1/(1−pj1)

pj2/(1−pj2)
= logit(pj1) − logit(pj2)

= [µ + αj + β] − [µ + αj ]

= β,

and, the odds ratio is

(ORRESPONSE,DELAY) =
pj1/(1 − pj1)

pj2/(1 − pj2)
= eβ
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Conditional Logistic Regression

• The conditional likelihood is

Lc(~y) =

JQ
j=1

 
nj

yj

!

P
~y∈Γ

JQ
j=1

 
nj

yj

!

which is the product of the probability functions over the J tables or strata.

• We can find the conditional MLE, β̂CMLE by maximizing Lc(β).

• As with a single table, in ‘large’ samples, β̂ will be approximately unbiased,
approximately normal, and have variance equal to the negative inverse of the
(expected) second derivative.
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What we mean by LARGE SAMPLES

For proper properties of the conditional likelihood Lc(β), we need ‘large’ samples.

There are two kinds of ‘large samples’ that allow β̂CMLE to be approximately normal (by the
central limit theorem).

1. We can have the within stata sample size (yj++) large (with the number of strata J

being small).

2. As the number of strata, J, becomes large (we can yj++ < ∞, and, actually, we can
have yj++ as small as 2, which we will discuss later).

As a result, we can have both (yj++) large and J large, and this would be a large sample as
well.
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• This is in contrast to the usual (unconditional MLE); if you look at the logistic
regression model

logit{P [Died|penici=j, DELAYk]} =

µ + αj + βDELAYk,

in order to be able to estimate each αj , we need each yj++ to be large
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• In particular, if J is large, using unconditional logistic regression for

logit(pjk) = µ + αj + βxk,

we will have a large number of parameters (αj ’s) to estimate, and we cannot unless
each yj++ is also large.

• If yj++ is also large, then

bβCMLE ≈ bβMLE ,

but the MLE is preferable since it is simpler computationally, and has nice properties.
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Mantel-Haenzsel Estimate

• One other possibility is the Mantel Haenszel estimate of a common odds ratio for a set
of J, (2 × 2) tables,

• As with the conditional MLE, the Mantel-Haenszel estimator of the common odds ratio
is (asymptotically unbiased) if either (yj++) is large or J is large or both.

• However, the Mantel-Haenzel estimate does not generalize to data with many
covariates, whereas the conditional likelihood does.
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CMH Using PROC FREQ

However, for the data studied today, we can calculate the CMH (or just the Mantel-Haenzsel)

proc freq;
tables pen*delay*response/cmh;
weight count;

run;

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
-------------------------------------------------------------------------
Case-Control Mantel-Haenszel 4.6316 0.9178 23.3731

(Odds Ratio) Logit ** 3.9175 0.6733 22.7925

** These logit estimators use a correction of 0.5 in every cell
of those tables that contain a zero. Tables with a zero
row or a zero column are not included in computing the
logit estimators.
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Conditional Logistic Regression

• We can use SAS Proc Logistic as before to do conditional logistic regression.

• SAS Proc Logistic will give us the conditional logistic regression estimate of the odds
ratio, and an exact 95% confidence interval for the odds ratio using the conditional
likelihood.
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SAS Proc Logistic

proc logistic descending;
class pen(PARAM=ref);
model response = pen delay ;
exact delay / estimate = both /*both = logor & or */;
freq count;

run;

/* SOME OUTPUT */
Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

delay Score 4.0880 0.0587 0.0384
Probability 0.0407 0.0587 0.0384
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Exact Parameter Estimates

95% Confidence
Parameter Estimate Limits p-Value

delay 1.6903 -0.2120 4.1588 0.0937

Exact Odds Ratios

95% Confidence
Parameter Estimate Limits p-Value

delay 5.421 0.809 63.995 0.0937
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Effectiveness of immediately injected penicillin or 1.5 hour

OR of Delayed injected penicillin in protecting against Streptococci

ODDS 95% Confidence Limits
Variable Ratio Lower Upper
--------------------------------------------
COND. LOGIT 5.421 0.809 63.995
MANTEL-HA 3.918 0.673 22.793
LOGISTIC* 6.335 1.026 39.115
LOGISTIC** 5.465 1.008 29.620
--------------------------------------------

* From Proc Logistic with warning:
‘The validity of the model fit is questionable.’
Uses dose as a class

**Using dose with scores
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• From each, we see that odds of being cured if there is no delay is about 5 times of
what it is if there is a delay.

• Although we get an estimate from (ordinarly) logistic regression, it is not as stable as
the other methods.

• Note, these strata sizes were small, but there are situations when they are even
smaller (matched pairs, discussed later).

• First though, let’s look at a couple of other models.

• In particular, let’s test for interaction.
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Penicillin Data

• If we fit the model with interaction between delay and penicillin, (with 4 dummy
variables for penicillin and the 4 for the interaction), and the unconditional had the
same problems as above. The conditional also has problems:

• Proc Logistic gave me the following:

proc logistic descending;
class pen(PARAM=ref);
model response = pen delay pen*delay ;
exact pen*delay /estimate;

freq count;
run;

Lecture 19: Conditional Logistic Regression – p. 35/40



SOME OUTPUT

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

delay*pen Score 7.0666 0.1354 0.0990
Probability 0.0729 0.1354 0.0990

Exact Parameter Estimates

95% Confidence
Parameter Estimate Limits p-Value

delay*pen 0.125 .# . . .
delay*pen 0.25 .# . . .
delay*pen 0.5 .# . . .
delay*pen 1 .# . . .

NOTE: # indicates that the conditional distribution is degenerate.
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• Proc Logistic can give us an exact conditional Score test (with p−value = .1354), even
though it cannot give us estimates of the interaction terms.

• Thus, I fit a little simpler model, with the main effects of penicillin fitted using dummy
variables, but the interaction with penicillin continuous (wj ):

logit (P [Cured|penici=j, DELAY=k]) =

µ + αj + β1xk + β12xkwj ,

where

xk =

(
0 if DELAY = none (k = 1)

1 if DELAY = 1.5 hours (k = 2)
.

and wj equals the actual dose (0.125, .25, .5, or 1), treated as continuous.

• We are interested in testing for homogeneity of the odds ratio across the J stratum.
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proc logistic descending;
class pen(PARAM=ref);
model response = pen delay pen_cont*delay ;
exact pen_cont*delay /estimate;
freq count;

run;

Exact Parameter Estimates

95% Confidence
Parameter Estimate Limits p-Value

delay*pen_cont -4.3902 -15.4187 2.8438 0.2708
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• When W (pennicilin) is treated as continuous,

logit (P [Cured|penici=j, DELAY=k]) =

µ + γ1wj + β1xk + β12xkwj

the unconditional logistic regression also converged, and we get the following
comparison

95% Confidence Limits

PEN*DELAY
---------------------------------------------

Parameter
METHOD Estimate P Value
---------------------------------------------
COND -4.3902 0.2708

UNCOND -3.4990 0.4288
---------------------------------------------

• Although both algorithms converged, the estimates are pretty large, and the
confidence intervals are very wide (not shown).

• However, we have indication that the common odds ratio assumption is valid.Lecture 19: Conditional Logistic Regression – p. 39/40



LogXact

• All of the models could have been fit in LogXact, a software package specializing in
conditional (or exact) logistic regression

• I noted small variations in the parameter estimates between SAS and LogXact.

• LogXact is mouse driven and is easy to use

• SAS is easier to do model building activities – creation of derived variables, “selection
=” routines and “copy and paste” model code
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