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Maximum Likelihood Estimation for Logistic Regression

e Consider the general logistic regression model

logit(p;) = Bo + B1xi1 + ... + BTk

with
Y; ~ Bern(p;),

1=1,...,n.
e The likelihood is

n

L(Bo, B1, -, Brc) = [ [ PV (1 — pi) 1= ¥0)

i=1
e Then, we maximize log L((o, 81, -.-, Bk ) t0 get MLE’s.
e The log-likelihood is

log[L(Bo, B1, s BK )] =

Bo (3o 1wi) + 61 (X wayi) + -+ Br (g Tikyi)
— > [ log(1+ eﬁo+51wi1+---—l—5Kw¢K)
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With some data, it is possible that the data is so sparse (most people respond O or

most people respond 1) that there is no solution, but if there is a solution, it is unique
and the maximum.

In practice, if there is no solution, your logistic regression package will say something
like ‘Convergence not reached after 25 iterations’.

However, if the iterative approach converges, then the MLE is obtained.

In the next lectures, we will discuss other methods that may be more appropriate with
sparse data (conditional logistic regression, exact methods).

Large Sample Distribution: In large samples, B has approximate distribution

" —1
B~ Nki1 | B, [Zpi(l - pi)XiX;]

=1
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Sample Size requirements for approximate normality of the
MLE’s

® Asymptotics: The sample size needed to get approximately normal estimates using a
general logistic regression model depends on the covariates, and the true underlying
probabilities, p;

® As a rule of thumb, for the parameters of a given model to be approximately normal,
you would like
total sample size (n) 15

# parameters in model

ePot+Bizi1
Pi = (1 + eBo+B1xin ) ’
you could have n = 30 different values of x; and get approximately normal estimates
of (8o, B1) since

® Thus, for a model like
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Confidence Intervals

e For confidence intervals and test statistics, you can use
n —1
Var(B) = [Z@'(l — ﬁi)XiX;] :
i=1

e In particular, Var(B,) is the (k + 1, k + 1) element of Var(3) (since there is an
intercept, it is not the k', but k + 1.)

® Thus, 95% (large sample) confidence intervals are formed via

B + 1-96\/@“(,@)(k+1),(k+1)
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Test Statistics

® For the logistic model, a test of interest is whether z;;. affects the probability of

SUCCeSS,
HO . /Bk — 07

or equivalently, whether the probability of success is independent of ;..
Wald Statistic

® The most obvious test statistic is the WALD statistic:

Z = f’f —— ~ N(0,1)
\/VCL"“(B)kk

in large samples under the null.
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Likelihood Ratio Statistic

e The likelihood ratio statistic is

AGQ — Z{IOg[L(@OH?l?"'7?K)|HA]_~
log[L(ﬁ07617 76]{ — 07 7/8K>|HO]}

~ X7

where p; is the estimate under the alternative, and p; is the estimate under the null.
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Score test statistic

® The score statistic for
Ho : B =0,

IS based on the

2 /[\Z?zl ik (yi — Py)]?
Var(3 iy zik(yi — b))

® In general logistic regression, this statistic does not have the simple form that it had
earlier, mainly because we have to iterate to get the estimates of 3 under the null (and

thus to get p; ).

Y
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Goodness-of-Fit

e \When we discussed goodness-of-fit statistics earlier, we looked at the likelihood ratio
statistic for the given model versus the ‘saturated’ model.

e However, when the underlying data are bernoulli data,
Y; ~ Bern(p;),

a ‘saturated model’, i.e., a model in which we have a different parameter for each
individual is not informative, as we now show.

® In particular, since
Bern(p;) = Bin(1,p;),

our estimate of p; for the saturated model is

.Y 1ify; =1
] 0ifY; =0

which is either 0 or 1.
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® Now, the likelihood at the MLE for the saturated model is
n
H pii (1 - ﬁi)l_yi .
i=1
e Forindividual i, if y; = 1, then p; = 1 and
ﬁﬁzgz(l _Z’j\i)l—yi — 1100 —1
e Similarly, if y; = 0, then p; = 0 and
pYi(1—p)t v =01t = 1.

® Then, the likelihood at the MLE for the saturated model is

1=1,
1

n

(]

and the log-likelihood equals log(1) = 0.
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Suppose, even if the underlying data are coded as bernoulli for your computer
program, that, in reality, the underlying data actually arose as product binomial, i.e.,
many subjects have the same covariate vector x;.
In particular, suppose the underlying data are actually made up of J binomials, and
there are n; subjects with the same covariate vectorx;, j =1,..., J; n = J'.le n;, SO
we have

Yj ~ Bin(nj,pj).

Since the product bernoulli and product binomial likelihoods are proportional (the
same except for combinatorial terms not depending on 3), we would get the same
MLE and standard error estimates; however, for goodness-of-fit, we would use the
product binomial likelihood.

With x; the covariate vector associated with (binomial) group j, we want to test the fit
of the model

logit(p;) = x; 8

versus the saturated model (in which we estimate a different p; for each j.)

Lecture 18: Logistic Regression Continued — p. 11/104



The Deviance

e As with logistic models discussed earlier, the likelihood ratio statistic for a given model

M7 with estimates p; versus a ‘saturated’ model in which p; = %, Is often called the
J

deviance, denoted by D?,

D2(My) = 2{log[L(B)|Sat] — log[L(5)|M1]}

— Zgﬂjzl [yj log (;;%J) + (Tbj — yj)log (%)}

O

= T i Ol (5

2
~ Xp

under the null, where
Ejl = njﬁj and Ejg = nj(l — ]/?\j)

and
P = # parameters in sat. model — # parameters in My

e Deviance D? is often used as measure of ‘overall’ goodness-of-fit, and is a test

——statistic fromtermsteftoutof themodetk:
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Score Statistic

® Again, sometimes the ‘Score Statistic’ or Pearson’s chi-square is used to look at the
goodness of fit for a given model versus the saturated model:

Y2 J ly; —n;751°
J=1\ n;p;(1—p;)

]2

. 112
_ EJ [y; —n;D; [(nj—y;)—n;(1—pj)]
Jj=1 n;Dj n;(1—pj)

. ZJ 22 (Ojk_Ejk)2
= j=1 k=1 Ejk:

~ X3
e For the deviance D? and Pearson’s chi-square (X?) to be asymptotically chi-square,
so that they can be used as statistics to measure the fit of the model, you need each
n; to be large (actually, n; — o0).
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Sample Size for approx chi-squabe

e For a simple (2 x 2) table, recall we said that, for the chi-square approximation for the
Deviance (likelihood ratio) and Pearson’s chi-square to be valid, we should have

75% of the Ej, > 5

e Interms of the logistic regression model, this means that 75% of
Ejl = njﬁj > 9 and EjQ = nj(l —]/9\3') > 9,

or, for stratum ‘5,
Ej1+Ej2 >25+5

l.e.,
Ej1 + Ej2 > 10

e Note, though,
Ej1+ Ej2 = njipj +ni(1—Dj)

> 10
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® Thus, as a rough rule-of-thumb, for the chi-square approximation for the Deviance and
Pearson’s chi-square to be valid, we should have

75% of the n; > 10

e However, n; is often small. For example,
1) the covariates may be continuous, so that n; = 1.

2) the model may have a lot of covariates (so that very few individuals have the same
pattern), and most individuals will have different x;’s,

® In these cases, the Deviance and Pearson’s chi-square will not be approximately
chi-square. We will discuss other statistics that can be used in this situation.

Lecture 18: Logistic Regression Continued — p. 15/104



Example: The esophageal cancer data

® There are six age levels, four levels of alcohol, and four levels of tobacco. In theory,
there are

96 =6x4 x4

strata, but 8 strata have no observations, leaving J = 88 strata for model fitting. With
975 observations (200 cases and 775 controls), this means we have about 11
observations per stratum, which, on the surface, appears to be a good number.

e However, when looking more closely, we see that only 31 of the 88 strata (35%) have
n; > 10, so we may want to be a little careful when using D?.

e Also, with the saturated model having this many degrees of freedom (88), D? will have
power against a lot of alternatives, but not necessarily high power.

e For example, if we left one marginally significant term out of the model (with 1 df), D?
probably won’t be able to detect a bad fit.

e We will fit models to assess trends in cancer with alcohol and tobacco consumption,
and their interaction. We will discuss modelling the data a little later.
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GOF with nested Models

e For bernoulli data, the parameter estimates are OK, but since each group j has
n; = 1, D? will not be asymptotically chi-square, and could give you a very deceptive
idea of the fit.

e In this case, you could do as before: fit a broader model than the given model, but not
the saturated model.
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Likelihood Ratio Statistic for Nested Models

® Suppose
Y; ~ Bern(p;) = Bin(1,p;),

® Sometimes you can look at a broader model than the one of interest to test for
‘Goodness-of-Fit’.

® In general, to test the ‘fit’ of a given model, you can put interaction terms and/or square
terms in the model and test their significance.

® [or example, suppose you want to see if Model 1 fits,

Model 1:
eBo+B1%q
bi = 1+ Bo+B1Xi |7

® This model is nested in Model 2:
Model 2:
eBo+B1Xi+B2;
bi = 1+ eﬁo-i—ﬁixi—l-ﬁézi ’

Ho: 82 =0

® \We want to test
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e Recall, the deviance D? is sort of like a SUMS of SQUARES ERROR (error in the
given model versus the saturated), and a smaller model will always have more the
same or more error than the bigger model.

® As with log-linear and logistic models discussed earlier, to test for significance of
parameters in model 2 versus model 1, you can use

AD?(M2|M1) = D?(Mp) — D?(M2)

= 2{log[L(B) |Sat] — log[L(8)/M1]}~
2{log[L(B)|Sat] — log|L(5)|M2]}

= 2{log[L(B)M2] — log[L(B)M1]}

which is the ‘change in D?’ for model 2 versus model 1.

e If the smaller model fits, in large samples,
AD?*(M2|M1) ~ x2,,

where M parameters are set to 0 in the smaller model.
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e Even though we need binomial data (n; to be large) for D? to be approximately
chi-square, the same is not true for AD?.

e Each individual in the study could have a different x;, (i.e. n; = 1) and A D? will still be

AN

approximately a chi-square test statistic for g2 = 0, since log[L(3)|Sat] subtracts out
in the difference.

e Using differences in D?'s is just a ‘trick’ to get the likelihood ratio statistic

2{log[L(8)|M2] — log[L(B)[M1]},

in particular, the log-likelinood for the saturated model subtracts out, and does not
affect asymptotics.
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e Basically, regardless of the size of n;, if you are comparing

Model 1:
ePo+B1z
b= 1 + efothra ,
versus
Model 2:

eﬁo-i-ﬁiwq;-l-ﬁézq;
bi = 1 + ePot+Bizit+B5zi ’
a Taylor Series approximation can be used to show that,

2
Ba 2

— ~ X1
\Y Var(Bs)

AD?(M2|M1) ~
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Using G2

e As before, another popular statistic is G2, which is the likelihood ratio test statistic for
whether the parameters, except the intercept u, are 0 (i.e., the significance of
parameters in the model).

e For G2, the larger model always has bigger G2 since it has more parameters (sort of
like SUMS of SQUARES REGRESSION)

® Again, to test for significance of parameters in model 2 versus model 1, you can use
AG?*(M2|M1) = G? (M) — G*(My)

which is the ‘change in G2’ for model 2 versus model 1.

® Thus, the likelihood ratio statistic for two nested models can be calculated using either
AG? or AD?.
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Analysis of Esophageal Data

e We will treated AGE, TOBACCO, and ALCOHOL as hoth ordered and not ordered
(quantitative).

e \When treating age as ordered, we assigned the values
[ 30if 25-34
40 if 35-44
50 if 45-54
60 if 55-64
70 if 65-74
80 if 75+

AGE = {

® Tobacco is given in units of 10g/day,

1.5
2.5
4.0

TOB = <
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® Alcohol is given in units of 10g/day,

(9
ALC = ¢ 6
10
| 15
e And, of course,
) 1lifCASE
] 0if CONTROL

e \We also fit models with dummy variables for AGE (AGEGRP), TOBACCO (TOBGRP),
and ALCOHOL (ALCGRP).
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Summary of Model Fits

® Since age is considered a possible confounding factor, and there is enough data, all
models contain 6 dummy variables for the main effect of AGE (AGEGRP), i.e., the
‘basic’ model is

5
logit(p:) = Bo + Y _ ajai;

j=1

where the a;; are 5 dummy variables for the six age levels. We then added TOBACCO
(TOBGRP), and ALCOHOL (ALCGRP) to this basic model (next page). In some
models, TOBACCO and ALCOHOL are treated as ordinal, and in others, non-ordinal.

e \When looking at interactions, some models have AGE as ordinal in the interactions,
although still non-ordered (dummy variables) for the main effects.
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COVARIATES FITTED (in Hypothesis Tested/

#  addition to AGEGRP) di D2 Interpretation
1 TOBGRP + ALCGRP 76 82.34 Non-ordered main effects
2 TOBGRP + ALC 78 87.51 Linear effect of alcohol

3 TOBGRP + ALC + ALC™2 77 87.01 Linear & quad effects of alcohol

4 ALCGRP + TOB 78 84.53 Linear effect of tobacco

5 ALCGRP + TOB + TOB™2 77 83.73 Linear & quad effects of tobacco

6 ALC + TOB 80 89.02 Linear effects of tobacco and
alcohol
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ALC + TOB + ALETOB 79 88.05 Linear effects of tobacco and
alcohol + Alc/tob interaction

ALCGRP + TOBGRP 75 81.37 Non-ordered main effects, but

+ ALG-TOB ordered alcohol + Alc/tob interaction

ALCGRP + TOBGRP 75 80.08 Non-ordered main effects, but

+ ALC- AGE ordered alcohol slope depends on
age

ALCGRP + TOBGRP 75 82.33 Non-ordered main effects,

+ TOB-AGE ordered tobacco slope depends on
age

p-values for these D2 are all between .21 and .32
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® As stated, the sample size may be large enough to support approximate chi-square
distributions for the D?’s if the given model fits.

e However, these D?s will not necessarily have high power to detect where the model
does not fit. None of these D?’s are significant, saying all models are a good fit.

e Comparing models 1 and 2, there is some evidence that the increase in the log-odds
ratio with alcohol may not be purely linear,

D?*(TOBGRP + ALC) — D*(TOBGRP + ALCGRP) = 5.07

df =78 —T76=2, p=.08

This is because, having ALCGRP which includes 3 dummy variables for ALCOHOL, is
equivalent to having ALC, ALC?, and ALC3. Thus, this likelihood ratio statistic is
comparing a model with ALC to one with (ALC, ALC?, and ALC3).
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e However, when comparing models 2 and 3, which is looking for a quadratic effect
(ALC?), we find that ALC? is not significant,

D?*(TOBGRP + ALC) — D*(TOBGRP + ALC + ALC?) = 0.11

df =77—76=1, p=.95

so that the deviation from a straight line alcohol detected in the first test may be due to
chance.

e Linearity of trend with tobacco also seems adequate when comparing Model 4 with
Models 1 and 5; (p > .05) in both cases.

® Also, none of the models with interactions appear to add anything significant over
models with just the main effects of tobacco and alcohol p > .05 in all cases

e Also, Model 6, which contains just linear effects for each of alcohol and tobacco, fits
the data nearly as well as model 1, which has 4 more parameters for these effects:

D?*(TOB + ALC) — D*(TOBGRP + ALCGRP) = 6.68

df =80 — 76 =4, p=.154,
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Final Model

e The model we suggest is model 6,
5
logit(p;) = Bo + Z ajai; + Btog TOB: + Bal cALC:
j=1

where the a;; are 5 dummy variables for the six age levels and
Tobacco is given in units of 10g/day,

TOB — 4 1.5

| 4.0

and Alcohol is given in units of 10g/day,

ALC = <
10

15
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The estimates from the final model are (this is from Proc Logistic):

Parameter

Intercept

age
age
age
age
age
tob

alc

25-34
35-44
45-54
55-64
65-74

DF

R, PR PRPRPR

Estimate

-2.6068

-4.6680
-2.8131
-1.0542
-0.5047
0.0317
0.4094
0.2548

Standard Wald
Error Chi-Square ChiSq

0.4322 36.3812 <.0001
1.1680 15.9720 <.0001
0.5539 25.7905 <.0001
0.4438 5.6411 0.0175
0.4292 1.3827 0.2396

0.4383 0.0052 0.9424
0.0921 19.7734 <.0001
0.0265 92.8054 <.0001
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e \We estimate that the odds of esophageal cancer increases by a factor of

exp(Bal c) = exp(.255) = 1.29

for every additional 10 grams of alcohol consumed per day.
e \We estimate that the odds of esophageal cancer increases by a factor of

exp(Brog) = exp(.409) = 1.51

for every additional 10 grams of tobacco consumed per day.
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SAS Proc Logistic

data one;
input age $ alcohol $ tobacco $ cases controls;

if alcohol = '0-39° then alc = 2;
if alcohol = '40-79’ then alc = 6;
if alcohol = '80-119’ then alc =10;
if alcohol = 120+ then alc =15;
if tobacco = '0-9 then tob = .5;
if tobacco = '10-19’ then tob =1.5;
if tobacco = '20-29’ then tob =2.5;
if tobacco = '30+ then tob =4.0;

count=cases;
y=1;
output;

count=controls;
y=0;
output;

drop cases controls;
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cards;

25-34 0-39 0-9 0O 40 25-34 0-39 10-19 0 10 25-34

0-39 20-29 O 6 25-34 0-39 30+ 0 5 25-34 40-79 0-9
0O 27 25-34 40-79 10-19 O 7 25-34 40-79 20-29 O 4 25-34
40-79 30+ 0 7 25-34 80-119 0-9 0 2 25-34 80-119

10-19 O 1

<<see website for the data>>
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proc print noobs;
var age alc tob vy count;

run, / * PROC PRINT OUTPUTF/

AGE ALC TOB Y COUNT
25-34 2 0.5 1 0 25-34
25-34 2 1.5 1 0 25-34
25-34 2 2.5 1 0 25-34
25-34 2 4.0 1 0 25-34

MORE

proc logistic descending;
class age (PARAM=ref) ;
model y = age tob alc / aggregate scale=d /
freq count;
run;

NDNDNDDN

0.5
1.5
2.5
4.0

* specify for deviance

40
10

OO oo
(o))

*/;
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/| = SELECTED OUTPUF/

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value
Deviance 80 89.0166
Pearson 80 91.6997

Value/DF

1.1127
1.1462

Pr > ChiSq

0.2297
0.1748

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
ChiSq

Intercept 1 -2.6068
age 25-34 1 -4.6680
age 35-44 1 -2.8131
age 45-54 1 -1.0542
age 55-64 1 -0.5047
age 65-74 1 0.0317
tob 1 0.4094
alc 1 0.2548

Standard
Error

0.4322
1.1680
0.5539
0.4438
0.4292

0.4383
0.0921
0.0265

Wald
Chi-Square Pr >

36.3812 <.0001
15.9720 <.0001
25.7905 <.0001

5.6411 0.0175
1.3827 0.2396
0.0052 0.9424
19.7734 <.0001
92.8054 <.0001
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Hosmer-Lemeshow Goodness-of-Fit Statistic whea are

small

® Suppose the responses are bernoulli and are not naturally grouped into binomials,
either because there is a continuous covariate or many covariates so that the grouping
would lead to sparse strata, i.e., suppose that

more than 25% of n; < 10

® Then assume
Y; ~ Bern(p;) = Bin(1,p;),

e \We want to determine if the model,

eﬁo-l-ﬁixi
b= 1+ ePotbix: |7

is a good fit (we are thinking of x; as a vector).
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® One possible way is to fit a broader model (with interactions and/or squared, cubic, etc
terms) and see if those ‘extra’ terms are significant.

e Hosmer and Lemeshow suggest forming G (usually 10) ‘Extra’ terms or ‘Extra’
covariates based on combinations of the covariates x; in the logistic regression model.
You again test if these ‘Extra’ Covariates are significant.
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Simple Example

® [or example, suppose there is one continuous covariate z;, and we fit the model,
eBo+B1z;
Pi=17 + eBo+Bizi )’

where there are : = 1, ..., n observations in the dataset.

e \We could then form 10 extra terms or ‘groups’ based on deciles of the covariate z;, i.e.,
We form 10 groups of approximately equal size. The first group contains the n/10
subjects with the smallest values of z;, the second group contains the n/10 subjects
with the next smallest values of x;, and ... the last group contains the »n /10 subjects
with the highest values of ;.

® Suppose we define the 9 indicators (the last one is redundant)

I 1 if individual 7 is in group g
“ 1 0if otherwise
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® Then, to test goodness-of-fit, we consider the alternative model

logit(p;) = Bo + B1xi +v1li1 + ... + v9ls9

e |f model
logit(p;) = Bo + B1x;

IS appropriate, then
Y1 = ... =y = 0.

® Then, to test the fit of the model, we could use a likelihood ratio statistic, a score
statistic, or a Wald statistic for

H,:v1=..=7v =0,

and each of these statistics would be approximately chi-square with 9 degrees of
freedom if model fits.

Lecture 18: Logistic Regression Continued — p. 40/104



General Logistic Model

e Now, we are looking at the fit of the general logistic model,

eBo+B1%q
b= 14 ePotB1xi |’
in which the covariates can be continuous, and a method of forming the ‘Extra
Covariates’ is not obvious.

e Hosmer and Lemeshow suggest that we form groups based on ‘deciles of risk’; if

> =/
elBO—i_BlXi
=7

1 _|_ eﬁo—i_BlXZ

pi =

Y

is the predicted probability of failure for the given model, then Hosmer and Lemeshow
suggest forming groups based on deciles of p;, i.e.,

Lecture 18: Logistic Regression Continued — p. 41/104



e \We form 10 groups of approximately equal size. The first group contains the »n/10
subjects with the smallest values of p;, the second group contains the n /10 subjects
with the next smallest values of p;, and ... the last group contains the »n /10 subjects
with the highest values of p;.

® You can show that, if there is just one covariate x;, then we get equivalent groups
whether we base the grouping on x; or p;; (because p; is a monotone transformation
of ZILL)
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A Model for which to look at the fit

® Again, we are looking at the fit of the general model,

eBo+B1%q
bi = 1+ Bo+B1Xi |7

® Suppose we define the G group indicators

I 1 if individual 7 (p;) is in group g
“ 1 o0if otherwise
where the groups are based on ‘deciles of risk’.
® Then, to test goodness-of-fit, we consider the alternative model

logit(p;) = Bo + B1xi + +71Li1 + ... + Yoli9

e Effectively, we are forming an ‘alternative’ model used to test the fit of the given model.

e Even though I;, is based on the random quantities p;, Moore and Spruill (1975),

showed that, asymptotically, we can treat the partition as based on the true p; (and
thus, we can treat I;, as a ‘fixed’ covariate).
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If model

logit(pi) = Bo + B1x:
IS appropriate, then

Y1 =..=7vg-1 =0.

Then, to test the fit of the model, we could use a likelihood ratio statistic, a score
statistic, or a Wald statistic for

Hoi’Yl = ... = 7YG-1 :O,

and each of these statistics would be approximately chi-square with (G — 1) degrees
of freedom if model fits.

The score statistic only requires the estimate of (3o, 1) under the null, but, both the
likelihood ratio and the Wald statistic require the estimates of v, from the alternative
model.
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The Hosmer-Lemeshow statistic

e Hosmer and Lemeshow (1982), suggest using Pearson’s chi-square based on the
grouping of observations,

X2 — G [Og_Eg]2
HL 9=1 ng(Ey/ng)[1-E4/ng]

[ng_Egk]2

G 2
— Zg:l Zk:l Egk ’

where, for failure (Y = 0),

and, for success (Y = 1),
Og2 = ng — Og, g2 =ng — Fy

e Basically, this is Pearson’s (Hosmer and Lemeshow) chi-square applied to the (G x 2)
table of observed and expected counts in the G groups.
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Example—Arthritis Clinical Trial

® Recall the example of an arthritis clinical trial comparing the drug auranofin and
placebo therapy for the treatment of rheumatoid arthritis (Bombardier, et al., 1986).

® The response of interest is the self-assessment of arthritis, classified as (0) poor or (1)
good.

e Individuals were randomized into one of the two treatment groups after baseline
self-assessment of arthritis (with the same 2 levels as the response).

e The dataset contains 293 patients who were observed at both baseline and 13 weeks.
The data from 25 cases are shown below:
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e \We are interested in a pretest-posttest analysis, in which we relate the individual’s
bernoulli response

v — 1 if good at 13 weeks
* ] O0if poor at 13 weeks

to the covariates,
1. BASELINE self-assessment (denoted as x)
2. AGE IN YEARS,
3. GENDER
4. TREATMENT
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e In particular, the model is

logit(p;) =
BO + lei + BSEXSEXi + BAGEAGEZ' + BTRTTRTZ'

where the covariates are age in years at baseline (AGE;), sex (SEX;, 1=male,

O=female), treatment (TRT;, 1 = auranofin, 0 = placebo), and x; is baseline response
(1 = good, 0 = poor)

e The main question is whether the treatment increases the odds of a more favorable

response, after controlling for baseline response; secondary questions are whether the
response differs by age and sex.
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The Hosmer-Lemeshow Statistic can be obtained in both SAS Proc Logistic.

By default, SAS attempts to form 10 groups of approximately equal size n/10. Of
course, in this dataset, we have 293 observations, so we cannot get exactly the same
number of observations in each group;

Different software packages (such as STATA) may differ slightly in the partition.
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SAS Proc Logistic

The following ascii is in the current directory, and called a rt.dat
1 54 1 0 1
0 41 0 1 1
1 60 0 1 0
1 63 1 0 0

[+ SAS STATEMENTS/

DATA ARTH;
infile 'art.dat’;
input SEX AGE TRT x v;

proc logistic descending;
model y = SEX AGE TRT x /lackfit;
run;
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/| = SELECTED OUTPUF/

Response Profile

Ordered Total
Value y Frequency

1 1 234

2 0 59

Probability modeled is y=1.

Analysis of Maximum Likelihood Estimates

Standard
Parameter DF Estimate Error
Intercept 1 0.3327 0.8409
SEX 1 0.2168 0.3389
AGE 1 -0.00530 0.0144
TRT 1 0.7005 0.3136
X 1 1.4231 0.3102

Wald
Chi-Square Pr > ChiSq
0.1566 0.6923
0.4095 0.5222
0.1361 0.7122
4.9891 0.0255
21.0533 <.0001
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Partition for the Hosmer and Lemeshow Test

y = 1 y = 0
Group Total Observed Expected Observed Expected
1 29 13 15.51 16 13.49
2 29 17 18.02 12 10.98
3 29 23 20.99 6 8.01
4 29 25 23.18 4 5.82
5 28 24 23.47 4 4.53
6 31 30 26.21 1 4.79
7 29 23 25.24 6 3.76
8 29 28 26.28 1 2.72
9 30 26 27.45 4 2.55
10 30 25 27.65 5 2.35
Hosmer and Lemeshow Goodness-of-Fit Test Chi-Square DF Pr
> ChiSq

12.9408 8 0.1139
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Results

e Recall, the g’s have the interpretation as the conditional log-OR for a one unit increase
in the covariate, given all of the other covariates are the same.

e \We estimate that the odds of good response increases by
1. a factor of

exp(B1RT) = exp(0.7005) = 2.015

for those on treatment, (this is significant)
2. a factor of

exp(Bggy) = exp(0.2168) = 1.242

for males, (not significant)
3. a factor of

exp(Bage) = exp(—0.00530) = 0.995

for every year older, (not significant)
4. a factor of

exp(By) = exp(1.423) = 4.150

for those who also had a good pre-treatment response at baseline, (this is significant).
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® In SAS, the Hosmer and Lemeshow Goodness-of-fit Statistic is

X2 = 12.9408

with
10 —2=84df, p=0.1139

® The H-L test indicates the model fit is OK.
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Using D?

® Suppose, in the previous model, you want to see if there is a treatment by baseline
response interaction.

® You use Proc Logistic to do this:
e Reduced Model:

proc logistic descending;

model y = SEX AGE TRT x / aggregate=(SEX AGE TRT x)
scale=1 ;

run;

[ = SELECTED OUTPUF/
Deviance and Pearson Goodness-of-Fit Statistics
Criterion DF Value Value/DF Pr > ChiSq

Deviance 158 180.6392 1.1433 0.1048
Pearson 158 186.7077 1.1817 0.0590
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proc logistic descending;

model y = SEX AGE TRT xtrt / aggregate=(SEX AGE TRT Xx)
scale=1 ;

run;

[+ SELECTED OUTPUF/

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq
Deviance 157 178.4911 1.1369 0.1153
Pearson 157 183.9152 1.1714 0.0698

Number of unique profiles: 163
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e To calcluate D2, Proc Logistic uses the aggregate option to figure out the number of
distinct covariate patterns (strata) corresponding to the observed combinations of the
covariates (SEX AGE TRT x), and uses that as the saturated model. There are 163

patterns in this dataset:
POPULATION PROFILES

Sample

10
11
12
13

163

SEX AGE TRT X

O OoOOoOo

=—

ORr R BR

o

1

N

o

Sample
Size

1

N R~ Ol

-
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e \With 293 observations, and 163 distinct covariate patterns, we only have and average
of 293/163=1.8 observations per strata, which is not enough to justify an approximate
chi-square for D?.

e However, if you want to test for no treatment by baseline response interaction, you can
use the WALD STAT,

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

TRT* X 1 -0.9213 0.6297 2.1405 0.1435
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e Or, the Likelihood ratio statistic,

D?(SEX,AGE, TRT,X) — D?>(SEX,AGE, TRT, X, TRT * X) =

180.64 — 178.49 = 2.15 ~ x?
and get almost identical results to the WALD Stat. Again, even though
D?*(SEX, AGE,TRT, X)

and
D?(SEX,AGE,TRT, X,TRT * X)

are not approximate chi-squares, their difference is.
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Additional Slides on the Saturated Model

® To see the saturated model, consider the following example based on the esophageal
cancer data

proc means;
class age;

var y;
freq count;
run;

e The above code calculates the average number of “1's” in the database = p
® Summary
Analysis Variable : y

age N Obs N Mean
25-34 116 116 0.0086207
35-44 199 199 0.0452261
45-54 213 213 0.2159624
55-64 242 242 0.3140496
65-74 161 161 0.3416149

75+ 44 44 0.2954545
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Model Derived Estimates

e To easily estimate the model predicted probabilities, consider using the “reference”
coding

proc logistic descending;
class age (param=ref);
model y = age / aggregate scale=1;
freq count;
run;

® Then since each AGE category gets a dummy code, then p is equal to

ea+BAge Group

P(Y = 1\Age GI‘OUP) — 14 ea—{—ﬁAge Group

® Parameter Estimates

Standard
Parameter DF Estimate Error
Intercept 1 -0.8690 0.3304
age 25-34 1 -3.8759 1.0573
age 35-44 1 -2.1808 0.4749
age 45-54 1 -0.4203 0.3700
age 55-64 1 0.0878 0.3583
age 65-74 1 0.2129 0.3699
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For25-34

6—0.8690—3.8759

P(Y =1]25-35) = 1+e—0.8690—3.8759
= 0.008620964

6—0.8690

PY =1{75+) = 1+e—0-8690
0.295462424

Since the model predicted probabilities match the observed probabilities, you have a
“zero degrees of freedom” test and you have “perfect fit”

To illustrate the Goodness of Fit, we need a “non-saturated model”
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Introduction of Tobacco and Alcohol Levels

e Using PROC GENMOD

proc genmod descending;
class age ;
model y = age tob alc /dist=bin link=logit;
freq count;
run;

e Here, we want to observe the Deviance / DF ratio to check for Under/Over-dispersion

e Recall, for properly dispersed data (and hence a good model fit) we want the Deviance
to DF ratio to be around 1

e [or this model, the ratio is

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 967 710.5516 0.7348

e Our data appear “under dispersed” meaning that our model is predicting greater
variance than observed

® This is in part an artifact since we are treating each observation as a stratum. When
we calculate GOF, we need to group the data.
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Parameter Estimates

e Using PROC LOGISTIC

proc logistic descending;
class age (PARAM=ref) ;
model y = age tob alc / aggregate scale=1;
freq count;
run;

e Here, we have specified SCALE=1 - This means that we are multiplying the
variance-covariance matrix by a constant of 1 (i.e., the matrix is not adjusted...Now,
are data appear overdispersed)

® GOF statistics
Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq
Deviance 89.0166 80 1.1127 0.2297
Pearson 91.6997 80 1.1462 0.1748

Number of unique profiles: 88
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Before Scaling, going back to GOF

e \We specified “Aggregate” to calculate the change in deviance automatically

® Recall, this defines the J subtables that can be fit as a saturated model
e Thus, you can calculate the Change in deviance

e AG? is easy to calculate since you can fit a model with only the intercept and look at
the increase in likelihood with the added parameters

e SCALE and AGGREGATE must be used together

® Options for SCALE are
e 1 (or None): No scaling
e D : Var-Cov matrix scaled by the Deviance
e P :Var-Cov matrix scaled by Pearson’s y?
® C: Any constantc, 1 is a special case
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Quasi-Likelihood Estimation

e Scaling the Var-Cov matrix is a common method of correcting for poor predicted
variance (overdispersion or underdispersion)

e Note that the parameter estimates are not changed by this method. However, their
standard errors are adjusted for overdispersion, affecting their significance tests.

® Since we are altering the estimating equations, we are no longer calculating true
“Maximum Likelihood Estimates”

® The revised estimating equations are sometimes known as “quasi-likelihood”

e Quasi-likelihood estimating equations rely on only the mean and variance
specifications (as opposed to the full distribution of the outcome)

e (Quasi-likelinood for the basis a variety of estimating approached included Generalized
Estimating Equations

® (Quasi-likelinood estimating equations perform well given large sample sizes
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Scaled Estimates

® You can use either GENMOD or Logistic

proc genmod descending;
class age ;
model y = age tob alc /dist=bin link=logit aggregate scale=d
freq count;
run;

proc logistic descending;
class age (PARAM=ref) ;
model y = age tob alc / aggregate scale=d;
freq count;
run;
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GENMOD Results

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 80 89.0166 1.1127

Scaled Deviance 80 80.0000 1.0000 Hkkdkk
Pearson Chi-Square 80 91.7017 1.1463

Scaled Pearson X2 80 82.4131 1.0302

Log Likelihood -319.2895

Note: Value/DF now equals 1 for the scaled data - i.e., properly dispersed

Note also that VV/DF for the unscaled deviance is 1.1127, which indicates, when 88 unique
stratum are considered the data are over dispersed meaning the Var(Y) is greater than our
predicted model
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Parameter Estimates - GENMOD

Analysis Of Parameter Estimates

Standard
Parameter DF Estimate Error
Intercept 1 -2.6068 0.4322
age 25-34 1 -4.6681 1.1681
age 35-44 1 -2.8131 0.5539
age 45-54 1 -1.0542 0.4438
age 55-64 1 -0.5047 0.4292
age 65-74 1 0.0317 0.4383
age 75+ 0 0.0000 0.0000
tob 1 0.4094 0.0921
alc 1 0.2548 0.0265
Scale 0 1.0548 0.0000

NOTE: The scale parameter was estimated by the
square root of DEVIANCE/DOF.
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USING PROC LOGISTIC

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq
Deviance 89.0166 80 1.1127 0.2297
Pearson 91.6997 80 1.1462 0.1748

Number of unique profiles: 88
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 250.6831 7 <.0001

Note: In GENMOD, you get the “scaled estimates” for GOF, but LOGISTIC doesn’t print
them. | guess since they would equal the DF, they are not that exciting to look at.
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Parameter Estimates

NOTE: The covariance matrix has been multiplied by the

heterogeneity factor (Deviance / DF)

1.11271.

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Intercept 1 -2.6068
age 25-34 1 -4.6680
age 35-44 1 -2.8131
age 45-54 1 -1.0542
age 55-64 1 -0.5047
age 65-74 1 0.0317
tob 1 0.4094
alc 1 0.2548

Standard
Error

0.4322
1.1680
0.5539
0.4438
0.4292

0.4383
0.0921
0.0265
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Unscaled Estimates

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 278.9369 7 <.0001
Analysis of Maximum Likelihood Estimates

Standard

Parameter DF Estimate Error

Intercept 1 -2.6068 0.4097

age 25-34 1 -4.6680 1.1073

age 35-44 1 -2.8131 0.5251

age 45-54 1 -1.0542 0.4208

age 55-64 1 -0.5047 0.4069

age 65-74 1 0.0317 0.4155

tob 1 0.4094 0.0873

alc 1 0.2548 0.0251
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Residuals and Regression Diagnostics

e Additional factors to assess when determining “Goodness of Fit”
® Sometimes you can look at residuals to see where the model does not fit well.
® \When the responses are binary, but not binomial, a residual can be defined as

Y: — i

- VPi(1 — D)

€

e In large samples, we can replace p; in e; by p; to give

Y, — pi

= Vpi(l —p;)
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e |f the model is correctly specified, in large samples, this residual will have mean 0:

and variance:

E(ez)

Var(e;)

Q

Q

E( Y, —D; )
VPi(1=p;)

( E(Y;)—pi )
Vri(1=p;)
P; —DPq — O,

vV pi(1—p;)

Var z/i_ﬁiA
\/ Di (1—p;)
VarlY; —pi]
pi(1—p;)

pi(1=pi) _ q
pi(1—p;) ’
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e |f the true model is E(Y;) = m; # p;, then the residual has mean

Q

. E(Y;)—p;
Elei) (\/pi(l—pz'))

i —Pi 0
Vpi(1—p;) 70,

and variance ;

Va’r’ Yi_ i
Var(e;) =~ Pi ([1—297;]9) ]

_ i (1—74) # 17

pi(1—p;)
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® Thus, if we just look at the simple average of these residuals,

n
n=t E €;
i=1

and we do not get around O, it gives us an idea that the model does not fit well.
® And, if we just look at the average of the squared residuals

n
—1 2
n E e;
i=1

and we do not get around 1, then we know that something may be wrong with the
model. If the model fits, then

Var(e;) ~ E(e?) ~ 1
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e However, since Y; is always 0 or 1, regardless of the sample size (since Y; is Bernoulli,
and does not change with sample size), the observed residuals is not really that
informative when the data are binary (Cox).

e Note, the ordinary residuals Y; — p; are not as informative since you can show

n
> (Yi—pi)=0
i=1
as long as there is an intercept in the model.

e In a moment, we will talk about ways to look at the residuals when the data are not
grouped. First we consider the grouped case.
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Grouped binomials

e Suppose the data actually arise as J binomials, where y; is the number of successes,
and n; the sample size, with

e'BXJ'
-~/
1—|—ef8xj

pP; =

® The (unadjusted) Pearson residuals

o ( lyj — n;Dj] )
T \Vnib; (1= B))

In large samples, we can replace p; by p;, and

o ( Y5 — 1Py )
T \Wnap;(T=p))
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e [f the model is correctly specified, in large samples (n; large), this residual will have
mean O:

E(Yj) —nijpj _ njpi —n;pi

Eez- ~ =
) Vnipi(1—p;)  v/pi(1—pi)

=0,

and variance:

VarlYj —njp;] _ nipi(1 —pj)
n;pj (1 —pj) vnip; (1 —pj)

Var(e;) ~ ,
® Also, Y; will become more normal as n; gets large, and, if the model fits

€5 ~ N(O, 1)

e Then, if the model fits, we would expect the 95% of the residuals to be between -2 and
2, and to be approximately normal when plotted.
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e |[f the true model is E(Y;) = n;m; # n;jp;, then the residual has mean

and variance

M

E(ez)
Vnipj(1—pj)

njwi—njpi #0
Y

vV pi(1—p;)

Var(Y;)

Var[Yj —njpj]
n;ip;(1—pj)

njﬂ'j(l—ﬂ'j)
n;ip;(1—p;) 7 1,
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Still, Y; will become more normal as n; gets large, but

ej ~ N(ui,o7)

and plots can sometimes reveal departures from N (0, 1).

Note that, the Pearson’s chi-square is

You can generate reams of output of regression diagnostics using the INFLUENCE

option in the model statement
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Residuals for Esophageal Data

data two;
input age $ alcohol $ tobacco $ cases controls;
n = cases + controls;

if alcohol = '0-39" then alc = 2;

if alcohol = ’40-79’ then alc = 6;

if alcohol = '80-119’ then alc =10;

if alcohol = 120+ then alc =15;

if tobacco = '0-9’ then tob = .5;

if tobacco = '10-19’ then tob =1.5;

if tobacco = '20-29’ then tob =2.5;

if tobacco = '30+ then tob =4.0;

if age = '25-34" then agel = 1, else agel=0;
if age = '35-44’ then age2 = 1, else age2=0;
if age = '45-54’ then age3 = 1, else age3=0;
if age = '55-64" then aged4 = 1, else age4=0;
if age = '65-74" then age5 = 1, else age5=0;

cards;
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proc logistic data=two;

model cases/n = agel-age5 tob alc / aggregate scale=d INFLUE NCE;
output out=dinf prob=p resdev=dr h=pii reschi=pr difchisqg =difchi;
run;

Note: We switched to the event trials layout to reduce the output data set. Now, since we
have 96 rows of data, we’ll get 96 records in the outputted data set DINF.
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Summary of Pearson Residuals

proc univariate data=dinf;

var pr;
run;

Location Variability
Mean -0.00283 Std Deviation
Median -0.18818 Variance
Mode : Range

Interquartile Range

1.02665
1.05401

6.37022

1.13606
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Quantile

100% Max
99%

95%

90%

75% Q3
50% Median
25% Q1
10%

5%

1%

0% Min

Estimate

4.133526
4.133526
2.029202
1.168725
0.481946
-0.188184
-0.654117
-1.091350
-1.243294
-2.236690
-2.236690

Lecture 18: Logistic Regression Continued — p. 85/104



New to SAS 9.1

ods graphics;
ods pdf file="lec18.pdf"

style=journal;
proc logistic data=two;
graphics all;
model cases/n = agel-age5 tob alc / aggregate scale=d INFLUE NCE;

run;

ods pdf close;
ods graphics off;
—For PDF output, see class website (too comprehensive to include in lecture)
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Collinearity and Confounding in Logistic Regression

1. Confounding
e Note, confounding can be a problem in logistic regression with many covariates.

® One covariate confounds the relationship between the response and another covariate
if it is related to both the response and covariate.

® Suppose you want to control for a possible confounding factor that is not of interest
itself.

e If, in the fitted model, the confounding factor is not significant, but it changes the
significance and estimated odds ratio for the covariates of interest, then you should
always keep the confounding factor in the model (Breslow and Day, Hosmer and
Lemeshow).
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2. Collinearity
e Strictly speaking, collinearity refers to correlation among the covariates.

® Thus, if there is collinearity in a dataset, there will very often also be confounding,
since many of the covariates will be related to both the response and other covariates

® Sometimes, collinearity is unavoidable if we have both «x,; and :cfk as a covariate
(such as age and age?), which are usually highly correlated.

® |n extreme cases, where two covariates are very highly correlated, we get unstable
fitted equations, symptomatic of collinearity among the covariates. When a pair of

covariates are collinear, estimated coefficients may even change signs when the
covariates are in the model together versus in the model separately.
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e \With logisitic regression, one symptom of multicollinearity is failure of the
Newton-Raphson algorithm to converge, because of infinite regression coefficients,
very large standard errors and/or coefficients that change wildly under different model
specifications

e \When there is collinearity, one should consider which of the collinear variables is most
important.
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Model Building Strategies

e Building logistic regression models when there are many possible covariates can be a
bewildering experience.

® There can be many interactions to consider, categorical vs. continuous covariates,
data transformations, etc.

® |t is often useful to work hierarchically, looking at increasingly more complex structures
of nested models, using test statistics (likelihood ratio, score or Wald) in deciding
which covariates are important or not important in predicting response
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Some helpful steps

e Often, you first look at the relationship between the response and each covariate
separately:
1) With Pearson’s chi-square (or Fisher’s exact test) for a categorical covariate.
2) If the covariate is ordered or continuous, you often look at the simple logistic
regression

logit(p) = Bo + 1z
and test for significance of 31 in the regression (or, use an exact ordinal test).

® These relationships are sometimes called ‘univariate’ (one covariate) or ‘bivariate’ (1
response versus 1 covariate) relationships.
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Example—Arthritis Clinical Trial

® \We are interested in seeing how the binary response

_J 1lifgood at 13 weeks
| 0if poor at 13 weeks

is affected by the covariates,
1. BASELINE self-assessment:

o — 1 if good at BASELINE
"7 1 0if poor at BASELINE

2. AGE IN YEARS,
3. GENDER

SEX — 1 !f male
O if female

4. TREATMENT

TRT — 1 !f auranofin
0 if placebo
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Univariate Relationships

Covariate

Baseline
GOOD
POOR

AGE
21-47
48-56
57-66

GENDER
MALE
FEMALE

TREATMENT
AURANOFIN
PLACEBO

% GOOD

87.50
63.44

80.61
86.08
75.00

80.75
77.50

84.93
74.83

Pearson’s
Chi-Square

3.636

0.382

4.648

P-value

0.000

0.162

0.536

0.031
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e Treatment and Baseline response are significant, whereas the other two are not.
® Instead of continuous age, we formed three age groups (based on terciles)

Category Age Range

0 21-47
1 48-56
2 57-66

e Alternatively, we could have ran a logistic regression with continuous age as a
covariate.
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Multivariate Models

e After carefully looking at the univariate analyses as a screening tool, you can run a
‘multivariate’ analyses including all covariates thought to be important from the
univariate analyses

e Hosmer and Lemeshow recommend including any covariate in the multivariate
analyses which had p—value less than .25 in a univariate analysis.

e Hosmer and Lemeshow also recommend including other variables known to be
important (treatment, exposure variables, possible confounding variables, etc.) that
may not be significant.
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e Consider the importance of each covariate in the model, and look to see whether
some could be deleted or others need to be added (via test statistics, usually).

® Once you feel ‘close’ to a final model, look more carefully for possible interactions,
recoding of variables that might be helpful, addition of quadratic terms, or other
‘transformations’, etc.

e If possible, meet with an investigator on the subject matter to see if the model is
biologically plausible.
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Notes

® There is more than ONE ‘final model’
® In complex datasets, we often will present the results of several related models.

e What is important is that you write up your model building strategy in a fair and
descriptive way.

e ‘Statistical Significance’ is not the only reason to keep a covariate in the model. If a
covariate is thought (and shown by others) to be a confounding variable, for the
association between the exposure and disease, then it should be kept in.

® You may also be interested in p—values for covariates which are not significant, so you
often leave them in the model to show they are not significant.
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Stepwise regression

® As in linear regression, there is step-up, step-down, and stepwise regression.

® In the Step-up Procedure:
1. Fit the intercept only model, or some other relatively simple model that includes only
important covariates.
2. Fit all models that add an additional covariate to the model in 1. Choose the model
with the best fit out of these. If this new model fits significantly better (say, if the
p—value for the extra covariate is less than .05), keep this covariate in. If not, you
might stop with the current model.
3. Repeat these steps until you want to stop.
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e In the Step-Down Procedure:
A step-down procedure starts with a very complex model and then tries to delete

covariates that help the least.

® You may also elect to include all of the covariate interactions; however, this may result
in many required iterations to get back to a sensible model.
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Hybrid Stepwise Method:
Often, people use a hybrid method, trying to step-up or step down in tandem at each
step.

Other variable selection techniques are available. For example, Hosmer and
Lemeshow sugggest ‘best subsets’ regression as an alternative strategy.

Although it is done often (including by me), letting the computer select you final model
by one of these stepwise procedures can lead to a biological implausbile model just by
chance.

You are doing so many tests in the stepwise procedure that you may blow your a-level
out of the water.

Stepwise regression is most appropriate for ‘explaratory analyses’ to see what
relationships are going on in the data, which are to be proved in a later confirmatory
study.

Using the arthitis dataset, we will look at step-up, step down, and step-wise logistic
regression to determine the best predictors. In the SAS output below, any predictor not
significant at o = .05 (the SAS default) was not kept in the model.
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Step-Up Regression

proc logistic data=arth descending;

model y = SEX AGE TRT x [/ selection=forward ; / * forward=step-up * [
run;

[ = Selected Output * |

Forward Selection Procedure

Summary of Forward Selection Procedure

Variable Number Score Pr >
Step Entered In Chi-Square Chi-Square
1 X 1 22.8493 0.0001
2 TRT 2 5.2597 0.0218
NOTE: No (additional) variables met the 0.05 significance | evel for entry

into the model.
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Step-Down Regression

proc logistic data=arth descending;
model y = SEX AGE TRT x [/ selection=backward; / * backward=step-down * [

run;

Summary of Backward Elimination Procedure

Variable Number Wald Pr >
Step Removed In Chi-Square Chi-Square
1 AGE 3 0.1361 0.7122
2 SEX 2 0.4259 0.5140
NOTE: No (additional) variables met the 0.05 significance | evel for removal

from the model.
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Step-wise Regression

proc logistic data=arth descending;
model y = SEX AGE TRT x [/ selection=stepwise;

run;
Summary of Stepwise Procedure
Variable Number Score Wald Pr
Step Entered Removed In Chi-Square Chi-Square
Chi-Square
1 X 1 22.8493
0.0001
2 TRT 2 5.2597

0.0218

Lecture 18: Logistic Regression Continued — p. 103/104



Goodness-of-Fit

® Once you have come up with your ‘best’ model, you want to consider the
goodness-of-fit of the model you have selected.

® The goodness-of-fit statistics are the same as those discussed earlier:
1. You can fit a more general model (with interaction terms and quadratics), and see if
the extra terms are significant.
2. The Deviance or Pearson’s chi-square can be used if the strata sample sizes are
sufficient (> 75% of the n; > 10).
3. Hosmer and Lemeshow'’s statistic can be used if the strata sample sizes are small
(> 25% of the n; < 10).
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