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Mantel-Haenszel Estimator of Common Odds Ratio

• Mantel and Haenszel also proposed an estimator of the common odds ratio

• For table W = j, the observed odds ratio is

dOR
XY.W

j =
yj11yj22

yj21yj12

• If there is a common OR across tables, we could estimate the common OR with a
‘weighted estimator’:

dORMH =

PJ
j=1 wj

dOR
XY.W

jPJ
j=1 wj

,

for some ‘weights’ wj . (Actually, any weight will give you an asymptotically unbiased
estimate).
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• Mantel-Haenszel chose weights

wj =
yj21yj22

yj++

when ORXY.W
j = 1, giving

dORMH =

PJ
j=1 yj11yj22/yj++

PJ
j=1 yj21yj12/yj++
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• A good (consistent) estimate the variance of log[dORMH ] is (Robbins, et. al, 1985),
based on a Taylor series expansion,

dV ar[log dORMH ] =

PJ
j=1

PjRj

2[
P

J
j=1

Rj ]2
+

PJ
j=1

PjSj+QjRj

2[
P

J
j=1

Rj ][
P

J
j=1

Sj ]
+

PJ
j=1

QjSj

2[
P

J
j=1

Sj ]2
,

where
Pj = (Yj11 + Yj22)/Yj++

Qj = (Yj12 + Yj21)/Yj++

Rj =
Yj11Yj22

Yj++

Sj =
Yj12Yj21

Yj++

which is given in SAS.
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Notes about M-H estimate

• 1. This estimate is easy to calculate (non-iterative), although its variance estimate is a
little more complicated.

• 2. Asymptotically normal and unbiased with large strata (strata sample size yj++

large).

• 3. When each yj++ is large, the Mantel-Haensel estimate is not as efficient as the
MLE, but close to MLE for logistic regression, which is iterative. When each yj++ is
small, the MLE from logistic model could have a lot of bias.

• 4. Just like the Mantel-Haenzel statistic, unlike the logistic MLE, this estimator actually
works well when the strata sample sizes are small (yj++ small), as long as the
number of strata J is fairly large. (When doing large sample approximations,
something must be getting large, either yj++ or J, or both).
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Example - Age, Vaccine, Paralysis Data

• We showed earlier that the logistic regression estimate of the ‘common odds ratio’
between VACCINE (X) and PARALYSIS (Y ) controlling for AGE (W ) is

exp(β̂) = exp(1.2830) = 3.607,

with a 95% confidence interval,

[1.791,7.266]

which does not contain 1. Thus, controlling for ‘age’, individuals who take the vaccine
have 3.6 times the odds of not getting POLIO than individuals who do not take the
vaccine.

• The Mantel-Haenzel Estimator of the common Odds Ratio is

dOR
MH

= 3.591

with a 95% confidence interval of

[1.781,7.241]

• Thus, individuals who take the vaccine have about 3.6 times the odds of not getting
POLIO than individuals who do not take the vaccine.
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Confounding

There are four useful diagnostics for potential confounding of the effect of a predictor (e.g.,
treatment) of interest:

1. The potential confounder must be associated with the outcome

2. The potential confounder must be associated with the predictor of interest (Note:
Randomization in a clinical trial minimizes this)

3. Adjustment for the potential counfounder must affect the magnitude of the coefficient
estimate for the predictor of interest

4. The potential confounder must make sense in terms of the hypothetical causal
framework
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Confounding in Logistic Regression

• Here, we are interested in using logistic regression to see if W confounds the
relationship between X and Y.

• For simplicity, suppose we have 3 dichotomous variables

• In the logistic regression model,

w =

(
1
0

. x =

(
1
0

. Y =

(
1
0

.

• The logistic regression model of interest is

logit{P [Y = 1|w, x]} = β0 + αw + βx.

The conditional odds ratio between Y and X given W is

exp(β) = ORXY.W .
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• The marginal odds ratio between Y and X can be obtained from logistic regression
model

logit{P [Y = 1|x]} = β∗

0 + β∗x,

and is
exp(β∗) = ORXY .

• If there is no confounding, then
β = β∗

• Basically, you can fit both models, and, if

β̂ ≈ β̂
∗

,

then you see that there is no confounding.
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More Formal Check of Confounding ofW

• However, to be more formal about checking for confounding, one would check to see if

• 1. W and Y are conditionally independent given X,
or

• 2. W and X are conditionally independent given Y.

• To check these two conditions, you could fit a logistic model in which you make W the
response, and X and Y covariates;

logit{P [W = 1|x, Y ]} = α0 + τx + αy,

• In this model, α is the conditional log-odds ratio between W and Y given X, and is
identical to α in the logistic model with Y as the response and W and x as the
covariates,

α = log[ORWY.X ]

• Also, τ is the conditional log-odds ratio between W and X given Y

τ = log[ORWX.Y ].

• Thus, if there is no confounding, the test for one of these two conditional OR’s
equalling 0 would not be rejected, i.e., you would either not reject α = 0, or you would
not reject τ = 0.
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Alternative Procedure

• However, if it was up to me, if you really want to see if there is confounding, I would just
fit the two models:

logit{P [Y = 1|w, x]} = β0 + αw + βx

and
logit{P [Y = 1|x]} = β∗

0 + β∗x,

and see if

β̂ ≈ β̂
∗

• Rule of thumb in Epidemiology is that

˛̨
˛̨
˛
β̂ − β̂

∗

β̂
∗

˛̨
˛̨
˛ ≤ 20%?

• If there were many other covariates in the model, this is probably what you would do.
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If J > 2, then you would fit the two models

logit{P [Y = 1|W = j, X = x]} = β0 + αj + βx

and
logit{P [Y = 1|X = x]} = β∗

0 + β∗x,

and see if

β̂ ≈ β̂
∗
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Notes about Models

• In journal papers, the analysis with the model

logit{P [Y = 1|x]} = β∗

0 + β∗x,

is often called univariate (or unadjusted) analysis (the univariate covariate with the
response)

• The analysis with the model

logit{P [Y = 1|w, x]} = β0 + αw + βx

is often called a multivariate analysis (more than one covariate with the response).

• Strictly speaking,
logit{P [Y = 1|w, x]} = β0 + αw + βx

is a multiple logistic regression analysis.

• In general, you state the results from a multiple regression as adjusted ORs.
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Bias vs. Variance Trade off

• In the presence of confounding, the model not controlling for the confounding variable
produces a biased estimate of key predictor (“treatment”)

• Introducing additional parameters to control for the confounding reduces this bias

• However, including too my parameters (i.e., “overfitting” the data) may cause the model
to be too closely tied to the data at hand (poor predictive ability)

• There is a trade off between too few parameters (and some bias) and poor prediction
(in terms of large standard errors for estimated parameters)

• Lets examine these notations using simulations
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• Suppose you fit the two models, and there is no confounding,

• Then, in the models

logit{P [Y = 1|w, x]} = β0 + αw + βx

and
logit{P [Y = 1|x]} = β∗

0 + β∗x,

we have
β = β∗

• Suppose, even though there is no confounding, W is an important predictor of Y, and
should be in the model.

• Even though β̂ and β̂
∗

are both asymptotically unbiased (since they are both
estimating the same β), you can show that

V ar(β̂) ≤ V ar(β̂
∗

)

FULLER ≤ REDUCED
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Quasi-proof

• Heuristically, this is true because W is explaining some of the variability in Y that is not
explained by X alone,

• and thus, since more variability is being explained, the variance of the estimates from
the fuller model (with W ) will be smaller.
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Suppose α = 0.

• Now, suppose that, in real life, you have overspecified the model, i.e., α = 0, so that
W and Y are conditionally independent given X, i.e., the true model is

logit{P [Y = 1|w, x]} = β∗

0 + β∗x

• However, suppose you estimate (β0, α, β) in the model

logit{P [Y = 1|w, x]} = β0 + αw + βx

you are estimating β from an ‘overspecified’ model in which we are (unnecessarily)
estimating α, which is 0.

• In this case, β̂ from the overspecified model will still be asymptotically unbiased,
however estimating a parameter α that is 0 actually adds more error to the model, and

V ar(β̂) ≥ V ar(β̂
∗

)

FULLER ≥ REDUCED
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Simulation Framework

• Prior to writing SAS code, lets start with the basic logistic model

P [Yi = 1|Xβ] =
exp(Xiβ)

1 + exp(Xiβ)

• In a simulation, the vector β is known and assumed to be constant

• Simulation will vary the values in the vector Xi

• Given the linear term, Xβ, we would generate a random Bernoulli trial (binomial w/
n=1) with success probability defined above

• Generate many random data sets, analyze each and summarize

• It’s “simple”
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dm "output" clear; dm "log" clear;
options nocenter nostimer nonotes pageno=1;

/* The true model is defined to be
pi_i = alpha + beta_1 tx + beta_2 confound + error
where TX = 1 if treatment, 0 control

confound = 1 if confounder is present, 0 else

*/
%macro generate_random(seed,alpha,txeffect, x1, coneffect, x2);

tx = &x1;
confound = &x2;
txeffect = &txeffect;
coneffect = &coneffect;
xbeta =&alpha + &txeffect * tx + &coneffect * confound;
pi_i = exp(xbeta)/(1+exp(xbeta));
y = ranbin(&seed,1,pi_i);

%mend generate_random;

%macro SIMDATA(loops,seed,subjects,
alpha,cutvaluetx, cutvalueplacebo,
txeffect,coneffect);

data tempsim;
run; /*erase working file*/
%do i = 1 %to &loops;
data sim2;
num_with_confound_placebo = floor(&cutvalueplacebo * &subjects);
num_without_placebo = &subjects - num_with_confound_placebo;
num_with_confound_tx = floor(&cutvaluetx * &subjects);
num_without_tx = &subjects - num_with_confound_tx;

/* generate placebo - with confounder*/
do j = 1 to num_with_confound_placebo;
%generate_random(&seed,&alpha,&txeffect,0,&coneffect,1);
output;

end;

/* generate placebo - without confounder*/
do j = 1 to num_without_placebo;
%generate_random(&seed,&alpha,&txeffect,0,&coneffect,0);
output;

end;
/* generate tx - with confounder*/
do j = 1 to num_with_confound_tx;
%generate_random(&seed,&alpha,&txeffect,1,&coneffect,1);
output;

end;
/* generate tx - without confounder*/

do j = 1 to num_without_tx;
%generate_random(&seed,&alpha,&txeffect,1,&coneffect,0);
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output;
end;

run;

ods listing close;
ods results off;
ods output ParameterEstimates=tmyParm_twofact ;
proc logistic descending data=sim2;
model y = tx confound;

run;

ods output ParameterEstimates=tmyParm_txfact ;
proc logistic descending data=sim2;
model y = tx ;

run;

ods listing;
ods results on;

data t2myparm_twofact;
set tmyparm_twofact;
model = 1;
simnum = &i;

run;

data t2myparm_txfact;
set tmyparm_txfact;
model = 2;
simnum = &i;

run;

data tempsim;
set tempsim t2myparm_twofact t2myparm_txfact ;
if simnum = . then delete;

run;
%end; /* end of the do loop for simulation iterations */
data simresults;
set tempsim;
if ProbChiSq ge 0.05 then decision = 0;
else decision = 1;
Label decision = "Reject H0 = 1, fail to reject H0 = 0";

if variable = "tx" then do;
if (estimate - 1.96*stderr ) < &txeffect and
(estimate + 1.96*stderr) > &txeffect then Covered = 1;
else covered = 0;
end;
if variable = "confound" then do;
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if (estimate - 1.96*stderr ) < &coneffect and
(estimate + 1.96*stderr) > &coneffect then Covered = 1;

else covered = 0;
end;

run;

title2 "Summary of Rejection Rate of Null Hypothesis (Power)";
proc means data=simresults n mean ;
class model variable;
var decision Covered estimate stderr;

run;

%mend SIMDATA;
options nomprint;
/*%SIMDATA(loops, = number of simulation replicates

seed, = random simulation seed - values other than 0 non-random
subjects, = sample size PER arm
alpha, = intercept
cutvaluetx, = % of subjects in treatment arm with confounding variable
cutvalueplacebo, = % of subjects in placebo arm with confounding variable
txeffect, = beta for treatment (assumes dummy coding {1, 0} at time of random

number generate
coneffect = beta for confounding effect ({1,0} coding)
);*/

title "No confound effect: 1:1 confound allocation, OR_TX = 3 (N=200)";
%SIMDATA(200,0,200,-1.504,.5, .5,log(3),0);

This will run 200 simulation replicates with a random initial-

ization seed for a sample size of 200. 50% of the sample will

be in treatment 1 (active) and 50% will be in the control. The

confounding variable will not be associated with outcome (beta

=0) and is not associated with the treatment (equally distributed

across treatment)
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Simulation 1 Results

N
model Variable Obs Variable Mean

-----------------------------------------------------------
(Overspecified)

1 Intercept 200 decision 1.0000000
Covered .
Estimate -1.5251040
StdErr 0.2177174

confound 200 decision 0.0450000
Covered 0.9550000
Estimate 0.0098527
StdErr 0.2283039

tx 200 decision 0.9900000
Covered 0.9400000
Estimate 1.1042132
StdErr 0.2352918
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N
model Variable Obs Variable Mean

-----------------------------------------------------------
(correctly specified)

2 Intercept 200 decision 1.0000000
Covered .
Estimate -1.5161111
StdErr 0.1848402

tx 200 decision 0.9900000
Covered 0.9400000
Estimate 1.1014665
StdErr 0.2349531

-----------------------------------------------------------
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Summary results for over specified model

StdErr for TX overspecified 0.2352918
StdErr for TX correctly specified 0.2349531

Note that the overspecified standard error is slightly larger

The true βtx = log(3) = 1.0986 and 94% of the repeated samples contained this value. We
also rejected the null hypothesis 99% of the time (i.e., Power = 99%)
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Same simulation as before, larger N

title "No confound effect: 1:1 confound allocation, OR_TX = 3 (N=1000)";
%SIMDATA(200,0,1000,-1.504,.5, .5,log(3),0);
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model Variable Obs Variable Mean
--------------------------------------------------------
(incorrect)

1 Intercept 200 decision 1.0000000
Covered .
Estimate -1.5013574
StdErr 0.0964341

confound 200 decision 0.0500000
Covered 0.9500000
Estimate -0.0026302
StdErr 0.1014900

tx 200 decision 1.0000000
Covered 0.9700000
Estimate 1.0982165
StdErr 0.1044118
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model Variable Obs Variable Mean
-------------------------------------------------------
(correct)

2 Intercept 200 decision 1.0000000
Covered .
Estimate -1.5018095
StdErr 0.0819981

tx 200 decision 1.0000000
Covered 0.9700000
Estimate 1.0976297
StdErr 0.1043794

---------------------------------------------------------
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Bias

title "Small confound effect: 1:3 confound allocation, OR_TX = 3 (N=200)";
%SIMDATA(200,0,200,-1.504,.25, .75,log(3),log(.50));

Here: we use an unequal allocation of placebo, tx w/ and w/o confounding variables

• 200 Placebo subjects, 75% of which have the confounding variable

• 200 Active subjects, 25% of which have the confounding variable

• That is, the confounding variable is associated with treatment

• βconfounding = log(.50) so it is associated with Y
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N
model Variable Obs Variable Mean

-----------------------------------------------------------
(correct model)

1 Intercept 200 decision 1.0000000
Covered .
Estimate -1.5100889
StdErr 0.2882333

confound 200 decision 0.6900000
Covered 0.9600000
Estimate -0.6989296
StdErr 0.2882740

tx 200 decision 0.9700000
Covered 0.9550000
Estimate 1.0951893
StdErr 0.2948837

Lecture 15 (Part 2): Logistic Regression & Common Odds Ratio, (With Simulations) – p. 26/32



N
model Variable Obs Variable Mean

------------------------------------------------------
(incorrect model)

2 Intercept 200 decision 1.0000000
Covered .
Estimate -1.9916979
StdErr 0.2187634

tx 200 decision 1.0000000
Covered 0.8000000
Estimate 1.4197298
StdErr 0.2641194

---------------------------------------------------------
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Summary

Correct (Full) Model
Estimate 1.0951893

Incorrect model
Estimate 1.4197298

Note: The incorrect model is biased. When controlled for the confounding variable, the
Log(OR) for TX is unbiased (recall, 1.0986 is the true value)
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No confounding, But has effect

title "No confound effect: 1:1 confound allocation, OR_TX = 3 (N=200)";
%SIMDATA(200,0,200,-1.504,.50, .50,log(3),log(.50));
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N
model Variable Obs Variable Mean

--------------------------------------------------------
(correct model)

1 Intercept 200 decision 1.0000000
Covered .
Estimate -1.5297037
StdErr 0.2282264

confound 200 decision 0.8400000
Covered 0.9800000
Estimate -0.7095019
StdErr 0.2507242

tx 200 decision 1.0000000
Covered 0.9600000
Estimate 1.1465769
StdErr 0.2589997

--------------------------------------------------------
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N
model Variable Obs Variable Mean

--------------------------------------------------------
(incorrect model)

2 Intercept 200 decision 1.0000000
Covered .
Estimate -1.8349762
StdErr 0.2063221

tx 200 decision 1.0000000
Covered 0.9700000
Estimate 1.1209348
StdErr 0.2558027

---------------------------------------------------------
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Note that the mean stderrs are not as predicted
StdErr fuller 0.2589997 <-- expected to be smaller
StdErr reduced 0.2558027

However, the coverage probability suggest the fuller model is suggesting smaller standard
errors (smaller intervals = less coverage probability)
Based on 200 simulation replicates
Covered fuller 0.9600000 <-- smaller as expected
Covered reduced 0.9700000

Based on 1000 simulation replicates
Covered fuller 0.9320000 <-- same trend
Covered reduced 0.9370000
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