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Mantel-Haenszel Estimator of Common Odds Ratio

e Mantel and Haenszel also proposed an estimator of the common odds ratio
e [ortable W = j, the observed odds ratio is

—XY.W ; ;
ORj _ Yj11Y;22

Yj21Yj12

e |[f there is a common OR across tables, we could estimate the common OR with a
‘weighted estimator’:

J —XY. W
Zj:l w;OR;

J
Zj:l Wy

for some ‘weights’ w;. (Actually, any weight will give you an asymptotically unbiased
estimate).

ORmp =
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e Mantel-Haenszel chose weights

_Yj21Yj22
Yj++

when ORXY-W = 1, giving

J

2 j—1Yj119522/Yj++
J

2 j—1Y521Y512/Yj++

ORnp =
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® A good (consistent) estimate the variance of log[aﬁMH] is (Robbins, et. al, 1985),
based on a Taylor series expansion,

@“[log 5EMH] =

>J_1 PjR; 71 PjS;+Q,R; > 71 Q;S;
J .12 J J + J 2

Q[ijl Rg] Q[ijl Rj][ijl Sj] Q[ijl Sj]

where
P; = (Yj11 + Yjo2)/ Y14

Qj = (Yji2 + Yj21)/Yjr+

R, = Y;11Y22
Vit

S, = Yj12Yj21
Yit+

which is given in SAS.
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Notes about M-H estimate

e 1. This estimate is easy to calculate (non-iterative), although its variance estimate is a
little more complicated.

e 2. Asymptotically normal and unbiased with large strata (strata sample size y; 4+
large).
e 3. When each y;4 4 is large, the Mantel-Haensel estimate is not as efficient as the

MLE, but close to MLE for logistic regression, which is iterative. When each y;4 4 is
small, the MLE from logistic model could have a lot of bias.

e 4. Just like the Mantel-Haenzel statistic, unlike the logistic MLE, this estimator actually
works well when the strata sample sizes are small (y,; 4+ small), as long as the
number of strata J is fairly large. (When doing large sample approximations,
something must be getting large, either y; 4 or J, or both).
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Example - Age, Vaccine, Paralysis Data

e \We showed earlier that the logistic regression estimate of the ‘common odds ratio’
between VACCINE (X) and PARALYSIS (Y) controlling for AGE (W) is

exp(B) = exp(1.2830) = 3.607,

with a 95% confidence interval,
[1.791, 7. 266]

which does not contain 1. Thus, controlling for ‘age’, individuals who take the vaccine
have 3.6 times the odds of not getting POLIO than individuals who do not take the
vaccine.

® The Mantel-Haenzel Estimator of the common Odds Ratio is

———MH
OR = 3.591

with a 95% confidence interval of

[1.781, 7. 241]

® Thus, individuals who take the vaccine have about 3.6 times the odds of not getting
POLIO than individuals who do not take the vaccine.
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Confounding

There are four useful diagnostics for potential confounding of the effect of a predictor (e.g.,
treatment) of interest:

1. The potential confounder must be associated with the outcome

2. The potential confounder must be associated with the predictor of interest (Note:
Randomization in a clinical trial minimizes this)

3. Adjustment for the potential counfounder must affect the magnitude of the coefficient
estimate for the predictor of interest

4. The potential confounder must make sense in terms of the hypothetical causal
framework
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Confounding in Logistic Regression

® Here, we are interested in using logistic regression to see if W confounds the
relationship between X and Y.

e [or simplicity, suppose we have 3 dichotomous variables
® In the logistic regression model,

1 1 1
{0 {0 {0

® The logistic regression model of interest is
logit{ P[Y = 1|w, z]} = Bo + aw + Bz.
The conditional odds ratio between Y and X given W is

exp(8) = OR*Y-W,
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e The marginal odds ratio between Y and X can be obtained from logistic regression
model

logit{ P[Y = 1|x)} = By + Bz,

and is
exp(8*) = OR*Y .

e If there is no confounding, then
B=p"

e Basically, you can fit both models, and, if

then you see that there is no confounding.

Lecture 15 (Part 2): Logistic Regression & Common Odds Ratio, (With Simulations) — p. 9/32



More Formal Check of Confounding oV

e However, to be more formal about checking for confounding, one would check to see if

e 1. W and Y are conditionally independent given X,
or

e 2. W and X are conditionally independent given Y.

e To check these two conditions, you could fit a logistic model in which you make W the
response, and X and Y covariates;

logit{ P(W = 1|z,Y]} = ao + T + ay,

e In this model, « is the conditional log-odds ratio between W and Y given X, and is
identical to « in the logistic model with Y as the response and W and z as the

covariates,

a = log[ORW Y%

® Also, 7 is the conditional log-odds ratio between W and X given Y
T = log[OR"Y X Y],

® Thus, if there is no confounding, the test for one of these two conditional OR’s
equalling 0 would not be rejected, i.e., you would either not reject o« = 0, or you would
not reject = = 0.
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Alternative Procedure

e However, if it was up to me, if you really want to see if there is confounding, | would just
fit the two models:

logit{ P|Y = 1|w, z]} = Bo + aw + Pz

and
logit{ P[Y = 1|2]} = 55 + 8",
and see if
BrpB
e Rule of thumb in Epidemiology is that
BB | < 0%

e If there were many other covariates in the model, this is probably what you would do.
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If J > 2, then you would fit the two models
logit{ P[Y = 1|W =j,X =2x|} = Bo + o + Bz
and
logit{ P[Y = 1|X =z|} = 55 + B «,

and see if

A

B~p3
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Notes about Models

® In journal papers, the analysis with the model
logit{ P[Y = 1]a]} = 5} + 5",

is often called univariate (or unadjusted) analysis (the univariate covariate with the
response)

® The analysis with the model
logit{ P|Y = 1|w, z]} = Bo + aw + Pz

is often called a multivariate analysis (more than one covariate with the response).
e Strictly speaking,
logit{ P[Y = 1|w, z]} = Bo + aw + Bz
is a multiple logistic regression analysis.
® |n general, you state the results from a multiple regression as adjusted ORs.
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Bias vs. Variance Trade off

® In the presence of confounding, the model not controlling for the confounding variable
produces a biased estimate of key predictor (“treatment”)

e Introducing additional parameters to control for the confounding reduces this bias

e However, including too my parameters (i.e., “overfitting” the data) may cause the model
to be too closely tied to the data at hand (poor predictive ability)

® There is a trade off between too few parameters (and some bias) and poor prediction
(in terms of large standard errors for estimated parameters)

® [ets examine these notations using simulations
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® Suppose you fit the two models, and there is no confounding,
e Then, in the models

logit{ P[Y = 1|w, z]} = Bo + aw + Bz
and
logit{ PY = 1[a]} = 6 + 5z,

we have
B=p"
® Suppose, even though there is no confounding, W is an important predictor of Y, and
should be in the model.

e Even though 3 and B* are both asymptotically unbiased (since they are both
estimating the same (), you can show that

Var(B) < Var(B")

FULLER < REDUCED
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Quasi-proof

e Heuristically, this is true because W is explaining some of the variability in Y that is not
explained by X alone,

e and thus, since more variability is being explained, the variance of the estimates from
the fuller model (with W) will be smaller.
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Suppose a = 0.

® Now, suppose that, in real life, you have overspecified the model, i.e., a = 0, so that
W and Y are conditionally independent given X, i.e., the true model is

logit{ P[Y = 1w, z]} = 8§ + f*«
e However, suppose you estimate (3p, «, ) in the model
logit{ P[Y = 1|w, z]} = Bo + aw + Bz

you are estimating 2 from an ‘overspecified’ model in which we are (unnecessarily)
estimating «, which is O.

e In this case, 3 from the overspecified model will still be asymptotically unbiased,
however estimating a parameter « that is 0 actually adds more error to the model, and

~ ok

Var(,@) > Var(B)

FULLER > REDUCED
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Simulation Framework

® Prior to writing SAS code, lets start with the basic logistic model

exp(Xif)
1+ exp(X;p3)

PlY; = 1]X] =

® |n a simulation, the vector 5 is known and assumed to be constant
e Simulation will vary the values in the vector X

® Given the linear term, X 3, we would generate a random Bernoulli trial (binomial w/
n=1) with success probability defined above

e (Generate many random data sets, analyze each and summarize

® It's “simple”
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dm "output" clear; dm"log" clear;
options nocenter nostinmer nonotes pageno=1;

/* The true nodel is defined to be
pi i = alpha + beta_1 tx + beta 2 confound + error
where TX = 1 if treatment, O control

confound = 1 if confounder is present, 0 else

*/

%racro gener at e_randon( seed, al pha, t xeffect, x1, coneffect, x2);
tx = &1,
confound = &x2;
txeffect = &t xeffect;

coneffect = &coneffect;
xbeta =&al pha + &t xeffect * tx + &coneffect * confound;
pi i = exp(xbeta)/(l+exp(xbeta));
y = ranbin(&seed, 1,pi _i);
%rend generate_random

%racro Sl MDATA(I oops, seed, subj ect s,
al pha, cut val uet x, cutval uepl acebo,
t xef f ect, coneffect);
data tenpsim
run; /+erase working filex*/
%o i =1 %o & oops;
data sin®;
num wi th_confound_pl acebo = fl oor (&cut val uepl acebo * &subj ects);
num wi t hout _pl acebo = &subjects - numw t h_confound_pl acebo;
numwi th_confound_tx = floor(&cutval uetx * &subjects);
num wi thout _tx = &subjects - numwi th_confound_tx;

/= generate placebo - with confounder=*/
doj = 1 to numwi th_confound_pl acebo;
%gener at e_r andon( &seed, &al pha, &t xef f ect, 0, &oneffect, 1);
out put ;
end;

/* generate placebo - without confounder=+/
doj =1 to numwi thout placebo;
%gener at e_r andon( &seed, &al pha, &t xef f ect, 0, &oneffect, 0);
out put ;
end;
/* generate tx - with confounder=*/
doj =1 to numw th_confound_tx;
%gener at e_randon( &seed, &al pha, &t xef f ect, 1, &oneffect, 1);
out put ;
end;
/* generate tx - wthout confounder=*/
doj =1 to numw thout tx;
%gener at e_r andon( &seed, &al pha, &t xeffect, 1, &oneffect, 0);
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out put ;
end;
run;

ods listing close;
ods results off;

ods out put Paranet er Esti mat es=t myPar m t wof act

proc | ogistic descendi ng data=si n;
nodel y = tx confound
run;

ods out put Paranet er Esti mat es=t myPar m t xf act

proc | ogistic descendi ng data=si n2;
nodel y = tx ;
run;

ods listing;
ods results on;

data t 2nypar m t wof act ;
set tnyparm twofact;
nodel = 1;

si mum = &i ;
run;

data t2nyparm t xf act;
set tmyparmtxfact;
nodel = 2;

si mum = &i;
run;

data tenpsim

set tenpsimt2nmypar mtwofact t2nyparmtxfact

if sitmum = . then del ete;
run;

%nd; /+ end of the do loop for sinmulation iterations =/

data sinresults;
set tenpsim
if ProbChi Sq ge 0.05 then decision
el se decision = 1;
Label decision = "Reject HO = 1,
if variable = "tx" then do

if (estimate - 1.96*stderr ) < & xeffect and
(estimate + 1.96+stderr) > &t xeffect then Covered

el se covered = O;
end;

fail

= 0;

if variable = "confound" then do
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if (estinmate - 1.96*stderr ) < &coneffect and
(estimate + 1.96+stderr) > &coneffect then Covered = 1;
el se covered = 0;
end;

run;

title2 "Summary of Rejection Rate of Null Hypothesis (Power)";
proc neans data=sinresults n nean

cl ass nodel vari abl e;

var deci sion Covered estimte stderr;
run;

%rend S| MDATA,
options nonprint;
[ =%8l MDATA(| oops, = nunber of sinulation replicates
seed, = random sinul ation seed - val ues other than 0 non-random
subj ects, = sanple size PER arm
al pha, = intercept
cutval uetx, = % of subjects in treatnent armw th confoundi ng vari abl e
cut val uepl acebo, = % of subjects in placebo armw th confoundi ng vari abl e
txeffect, = beta for treatnent (assunes dumry coding {1, 0} at tinme of rar
nunber generate
coneffect = beta for confounding effect ({1,0} coding)
)+l

title "No confound effect: 1:1 confound allocation, OR TX = 3 (N=200)";
sl MDATA( 200, 0, 200, - 1. 504, .5, .5,109(3),0);

This will run 200 simulation replicates with a random initial-
ization seed for a sample size of 200. 50% of the sample will
be in treatment 1 (active) and 50% will be in the control. The
confounding variable will not be associated with outcome (beta
=0) and is not associated with the treatment (equally distributed
across treatment)
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Simulation 1 Results

N
nodel Vari abl e Cbs Vari abl e Mean
(Overspeci fied)

1 | nt er cept 200 deci si on 1. 0000000

Cover ed .
Esti mat e -1.5251040
StdErr 0.2177174
conf ound 200 deci si on 0. 0450000
Cover ed 0. 9550000
Esti mat e 0. 0098527
St dErr 0. 2283039
t X 200 deci si on 0. 9900000
Cover ed 0. 9400000
Esti mat e 1.1042132
StdErr 0. 2352918
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nodel Vari abl e bs Vari abl e Mean

(correctly specified)

2 | nt er cept 200 deci si on 1. 0000000
Cover ed :

Esti mat e -1.5161111

StdErr 0. 1848402

t X 200 deci si on 0. 9900000

Cover ed 0. 9400000

Esti mat e 1.1014665

St dErr 0. 2349531
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Summary results for over specified model

StdErr for TX overspecified 0. 2352918
StdErr for TX correctly specified 0. 2349531

Note that the overspecified standard error is slightly larger

The true Bz = log(3) = 1.0986 and 94% of the repeated samples contained this value. We
also rejected the null hypothesis 99% of the time (i.e., Power = 99%)
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Same simulation as before, larger N

title "No confound effect: 1:1 confound allocation, OR TX = 3 (N=1000)";
%5l MDATA( 200, 0, 1000, -1.504, .5, .5,109(3),0);
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Vari abl e

Vari abl e

(i ncorrect)

| nt er cept

conf ound

t X

200

200

deci si on
Cover ed
Esti mat e
St dErr

deci si on
Cover ed
Esti mat e
St dErr

deci si on
Cover ed
Esti mat e
St dErr

. 0000000

. 9013574
. 0964341

. 0500000
. 9500000
. 0026302
. 1014900

. 0000000
. 9700000
. 0982165
. 1044118
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nodel Vari abl e Cbs Vari abl e Mean
(correct)
2 | nt er cept 200 deci sion 1.0000000
Cover ed :
Estimate -1.5018095
StdErr 0. 0819981

t X 200 deci sion 1.0000000
Cover ed 0. 9700000
Estimate 1.0976297

St dErr 0.1043794
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Bias

title "Small confound effect: 1:3 confound allocation, OR TX = 3 (N=200)";
%5l MDATA( 200, 0, 200, -1.504, .25, .75,109(3),10g(.50));

Here: we use an unequal allocation of placebo, tx w/ and w/o confounding variables
e 200 Placebo subjects, 75% of which have the confounding variable
® 200 Active subjects, 25% of which have the confounding variable
e That is, the confounding variable is associated with treatment

® Beonfounding = log(.50) so it is associated with Y
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Vari abl e

Vari abl e

(correct nodel)
1

| nt er cept

conf ound

t X

200

200

deci si on
Cover ed
Esti mat e
St dErr

deci si on
Cover ed
Esti mat e
St dErr

deci si on
Cover ed

Esti mat e
St dErr

o

o O oo

OPr OO

. 0000000

. 5100889
. 2882333

. 6900000
. 9600000
. 6989296
. 2882740

. 9700000
. 9550000
. 0951893
. 2948837
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nodel Vari abl e bs Vari abl e Mean

(i ncorrect nodel)

2 | nt er cept 200 deci si on 1. 0000000
Cover ed :

Estimate -1.9916979

StdErr 0.2187634

t X 200 deci si on 1. 0000000

Cover ed 0. 8000000

Esti mat e 1.4197298

St dErr 0. 2641194
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Summary

Correct (Full) Model
Estimate 1.0951893

Incorrect model
Estimate 1.4197298

Note: The incorrect model is biased. When controlled for the confounding variable, the
Log(OR) for TX is unbiased (recall, 1.0986 is the true value)
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No confounding, But has effect

title "No confound effect: 1:1 confound allocation, OR TX = 3 (N=200)";
%Sl MDATA( 200, 0, 200, -1. 504, .50, .50,l09(3),!10g(.50));
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Vari abl e

nodel Vari abl e
(correct nodel)
1 | nt er cept
conf ound
t X

200

200

deci si on
Cover ed
Esti mat e
St dErr

deci si on
Cover ed
Esti mat e
St dErr

deci si on
Cover ed

Esti mat e
St dErr

. 0000000

. 5297037
. 2282264

. 8400000
. 9800000
. 7095019
. 2507242

. 0000000
. 9600000
. 1465769
. 2589997
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nodel Vari abl e bs Vari abl e Mean

(i ncorrect nodel)

2 | nt er cept 200 deci si on 1. 0000000
Cover ed :

Estimate -1.8349762

StdErr 0. 2063221

t X 200 deci si on 1. 0000000

Cover ed 0. 9700000

Esti mat e 1.1209348

StdErr 0. 2558027

Lecture 15 (Part 2): Logistic Regression & Common Odds Ratio, (With Simulations) — p. 31/32



Note that the mean stderrs are not as predicted

StdErr fuller 0. 2589997 <-- expected to be snaller
StdErr reduced 0. 2558027

However, the coverage probability suggest the fuller model is suggesting smaller standard
errors (smaller intervals = less coverage probability)
Based on 200 sinul ation replicates

Covered fuller 0. 9600000 <-- smualler as expected
Covered reduced 0.9700000

Based on 1000 simnul ation replicates
Covered fuller 0. 9320000 <-- sane trend
Covered reduced 0.9370000
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