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Fitting GLMs

Suppose we have a GLM with a parameter vector

~β =

2
66664

β0

β1

...
βp

3
77775

and we want the ML estimators of ~β.

When we use GLMs, we typically have a non linear model.

For simplicity, denote β̂ as the vector of MLEs.
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Iterative Solutions

Iterative Solutions to non-linear equations follow this algorithm:

1. A seed value is selected (initial guess for β̂)

2. Using a polynomial approximation of the likelihood, a second “guess” is obtained

3. The difference, C, between guess i and i + 1 is calculated (C = β(i+1) − β(i))

4. Once the difference C < k where k = “convergence criterion” (say 0.0001) then the

estimate β(i+1) = β̂

Note: when β is a vector, the difference β(i+1) − β(i) yields a vector of ci’s where ci is the

convergence criterion for the ith element of ~β.

Convergence could be reached when all |ci| < k or when the
P

i |ci| < k
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Iterative MLEs

In general, there are two popular iterative methods for estimating the parameters of a
non-linear equations.

1. Newton-Raphson Method

2. Fisher’s Scoring Method

Both take on the same general form and differ only in the variance structure.

Recall the Wald (non-null standard error) and the Score (null standard error).

The Wald and Score tests will be similar to the Newton-Raphson and Fisher’s Scoring
methods.
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Score and Information

• An exponential class distribution can be written in the form

f(yi; θ) = exp[a(yi)b(θ) + c(θ) + d(yi)]

• Note: a(·), b(·) . . . are different functions than introduced in Lecture 11 (for example
c(θ) (for this notation) equals log a(θ) in Lecture 11 notation)

• So, l(·) can be written as

l = log L

=
nP

i=1
log (exp[a(yi)b(θ) + c(θ) + d(yi)])

=
nP

i=1
{a(yi)b(θ) + c(θ) + d(yi)}
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Score equations

• The “score” is U = dl/dθ, so

U =
nP

i=1
a(yi)

d b(θ)
dθ

+
d c(θ)

dθ

=
nP

i=1
a(yi)b

′(θ) + c′(θ)

V ar(U) = E(U2) = −E(U ′)

• where V ar(U) is the information.

• (for this class, assume these are definitions. Note that E(U) = 0)

• When Y is of the exponential class, the ∂l/∂θ can be simplified.
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Score Equations for Exponential Class Variables

U =
nX

i=1

∂E(Yi|Xi)

∂β

»
Yi − E(Yi|Xi)

V ar(Yi|Xi)

–

For example,
Suppose Yi ∼ Poi(µi)

E(Yi

˛̨
˛Xi) = µi = eX′

iβ

V ar(Yi |Xi) = µi

∂E(Yi |Xi )

∂β
= X′

ie
X′

iβ

= X′

iµi.

So,

U =

nX

i=1

Xiµi

»
Yi − µi

µi

–
=

nX

i=1

Xi [Yi − µi]
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Estimation

The MLE’s are obtained by solving the score equations, U equal to zero.

U =
nX

i=1

∂E(Yi|Xi)

∂β

»
Yi − E(Yi|Xi)

V ar(Yi|Xi)

–
= 0

Note: U is actually a vector of the p parameters of β.

For the jth parameter,

Uj =
nX

i=1

∂E(Yi|Xi)

∂βj

»
Yi − E(Yi|Xi)

V ar(Yi|Xi)

–
= 0
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Newton-Raphson vs. Fisher’s Scoring

bβ(m) = bβ(m−1) −

»
∂2l

βjβk

–−1

β=bβ(m−1)

U (m−1)

What makes the Newton-Raphson unique is that
h

∂2l
βjβk

i
−1

β=bβ(m−1)
is the variance estimated

under the alternative (like a Wald test).

Fisher’s Scoring uses the

E

»
∂2l

βjβk

–

Or the “expectation” of the “Hessian matrix”.

Definition:
h

∂2l
βjβk

i
is called the Hessian.
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For Fisher’s Scoring, let

ιjk = E[UjUk] = E[
∂l

∂βj

∂l

∂βk
]

With some work, it can be shown that

E[
∂l

∂βj

∂l

∂βk
] = −E[

∂2l

∂βjβk
]

Therefore, Fisher’s Scoring is similar to regular Score test, but it still plugs the estimates of
bβ(m−1) into the iterative solutions.
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Iterative Solutions by Hand

We will not be taking iterative solutions by hand.

In SAS,

1. SAS PROC GENMOD uses the Newton-Raphson method (by default)

2. SAS PROC LOGISTIC uses Fisher’s Scoring method (by default)

Both give similar results. The parameter estimates will be close to identical, but in some

cases, the standard errors may differ. In general, people do not lose sleep over the two

methods.
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Now, on to more about Logistic Regression
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Logistic Regression for anR × 2 tables

Consider the following toxicity dataset, with the rows fixed (or conditioned on) by design, i.e.,
the distribution of the observed data are a product of 4 binomials

Toxicity

| SOME | NONE | Total
---------+--------+-------+

1 | 8 | 92 | 100
---------+--------+-------+

Dose (mg) 10 | 15 | 85 | 100
---------+--------+-------+

100 | 22 | 78 | 100
---------+--------+-------+

1000 | 26 | 74 | 100
---------+--------+-------+
Total 71 329 400

(note in a previous lecture, we looked at a similar data set - this one is different)
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• The row margins E(Yj·) = yj· = mj· is fixed by design (or conditioned on), and the
parameters of interest are the of the probabilities of ‘SOME’ toxicity, given the dose j.

• It makes sense to analyze the data as they arose, and to directly model

P (Some Toxicity|dose level)

• In general, suppose we denote the column variable by

Y =

(
1 if success (column 1)
0 if failure (column 2)

.

and the row variable by X, where X can take on values 1, ..., R.

• We are interested in modelling

P [Y = 1|X = j] = pj
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• For the ith individual in row j, we let

Yij =

(
1 if success
0 if failure

,

i = 1, ..., nj .

• Then, the individuals in row j have independent bernoulli observations,

Yij ∼ Bern(pj)

and the number of successes on treatment j is binomial:

Yj =

njX

i=1

Yij ∼ Bin(nj , pj),

for j = 1, ..., R.
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Question of interest:

Does the probability of success vary with X ?

• Let xj be the ordinal value or ‘score’ of level j of X (it could equal j or the dose level,
or other values as described previously).

• The logistic regression model is

P [Y = 1|X = j] = pj =
eβ0+β1xj

1 + eβ0+β1xj

where β0 and β1 are parameters.

• Note, if β1 = 0, then

P [Y = 1|X = j] =
eβ0

1 + eβ0
,

for all xj which is not a function of xj , i.e.,

P [Y = 1|X = j] = P [Y = 1]

does not change with xj , and, Y and X are said to be independent.

• Thus, our main interest will be testing

H0 : β1 = 0.
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Assigning ‘Scores’

• When looking for a ‘trend’ in the proportions, one may consider using different sets of
scores for X

x1 ≤ x2 ≤ ... ≤ xR

• In this example

Toxicity

| SOME | NONE | Total
---------+--------+-------+

1 | 8 | 92 | 100
---------+--------+-------+

Dose (mg) 10 | 15 | 85 | 100
---------+--------+-------+

100 | 22 | 78 | 100
---------+--------+-------+

1000 | 26 | 74 | 100
---------+--------+-------+
Total 71 329 400
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Power of ‘Cochran-Armitage’ trend test

Two possible sets of scores are;
(1, 10, 100, 1000)

or
[log10(1), log10(10), log10(100), log10(1000)] = [0, 1, 2, 3]

• In general, when you assign scores and use the Cochran-Armitage trend test, a valid
question is:

• 1. Will any set of scores

x1 ≤ x2 ≤ ... ≤ xR

be OK ?
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• The answer is:
Under the null

H0 : pj =

„
eβ0

1 + eβ0

«
,

any set of scores will give you a valid test (Type I error OK under the null).

• However, some scores are more powerful to detect departures from the null hypothesis
in favor of the alternative

HA: there is a trend in pj with dose
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• In particular, the most powerful ’scores’ to assign are the ones of the true model

pj =

 
eβ0+β1xj

1 + eβ0+β1xj

!
,

i.e.,
x1 ≤ x2 ≤ ... ≤ xR,

• Suppose instead, you use the set of scores

z1 ≤ z2 ≤ ... ≤ zR
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• The power of the test using the scores

z1 ≤ z2 ≤ ... ≤ zR

approximately equals the squared Pearson correlation:

[Corr(zj , xj)]
2 = PR
j=1 nj [zj−z̄][xj−x̄]

qP
R
j=1 nj [zj−z̄]2

P
R
j=1 nj [xj−x̄]2

!2

• Then, if zj is a linear function of xj , the correlation equals 1, and the efficiency equals
1.
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Example

Recall the following toxicity dataset,
Toxicity

| SOME | NONE | Total
---------+--------+-------+

1 | 8 | 92 | 100
---------+--------+-------+

Dose (mg) 10 | 15 | 85 | 100
---------+--------+-------+

100 | 22 | 78 | 100
---------+--------+-------+

1000 | 26 | 74 | 100
---------+--------+-------+
Total 71 329 400
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• We want to fit the model

P (Some Toxicity|dose level j) = pj =

„
e

β0+β1xj

1+e
β0+β1xj

«
,

• First, we will test for trend using
(x1, x2, x3, x4) = (1, 10, 100, 1000).

and
(x1, x2, x3, x4) = (0, 1, 2, 3).
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Cochran-Armitage Trend Tests (Score Test)

The null hypothesis for the Cochran-Armitage Trend test is that

H0 = pj = p ∀j

To test this in SAS, you need to specify the TREND option in the table statement.

data one;
input x y count;
cards;

1 1 8
1 0 92

10 1 15
10 0 85

100 1 22
100 0 78

1000 1 26
1000 0 74
;
run;
proc freq data=one;

tables x * y/trend;
weight count;

run;
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For scores (1, 10, 100, 1000),

Cochran-Armitage Trend Test
---------------------------
Statistic (Z) -2.6991
One-sided Pr < Z 0.0035
Two-sided Pr > |Z| 0.0070

Sample Size = 400

Similarly, you could use the scores (0,1,2,3) to get
Cochran-Armitage Trend Test
---------------------------
Statistic (Z) -3.5698
One-sided Pr < Z 0.0002
Two-sided Pr > |Z| 0.0004

Sample Size = 400
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Model Scores Chi-Square p−value

(1) (1,10,100,1000) 7.285 (= −2.69912) 0.0070
(2) (0,1,2,3) 12.744 (= −3.56982) 0.0004

• Suppose (1, 10, 100, 1000) are the correct scores, the efficiency when wrongly using
(0, 1, 2, 3) instead of

(1, 10, 100, 1000)

is
(Corr[xj , log10(xj)])

2 = 0.824142 = 0.67921

• Similarly, since the correlation coefficient is symmetric, the efficiency when wrongly
using (1, 10, 100, 1000) instead of (0, 1, 2, 3) is

(Corr[xj , log10(xj)])
2 = 0.824142 = 0.67921
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Notes on efficiency

• Suppose you have two tests, t1 and t2

• Suppose both tests are consistent (i.e., asymptotically converge to the true parameter)

• The asymptotic relative efficiency of t2 to t1 can be defined as

ARE21 = k

where k is the value for the efficiency (k = 0.679 in our example)

• In terms of sample size, you would need k−1 subjects to reach the same critical value

• For example, we would need 1.5 (= .679−1) times the number of subjects if we
misspecified that ranks like we did
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Using SAS Proc Corr

data one;
input x y count;
logx = log10(x);
cards;

1 1 92
1 0 8

10 1 85
10 0 15

100 1 78
100 0 22

1000 1 74
1000 0 26
;

proc corr ;
var x logx y ;
freq count;

run;
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Pearson Correlation Coefficients / Prob > |R| under Ho: Rho= 0 / N = 400
/ FREQ Var = COUNT

X LOGX Y

X 1.00000 0.82414 -0.13495 = Corr
0.0 0.0001 0.0070 = p-value

LOGX 0.82414 1.00000 -0.17849
0.0001 0.0 0.0004

Y -0.13495 -0.17849 1.00000
0.0070 0.0004 0.0

Lecture 14: GLM Estimation and Logistic Regression – p. 29/62



Note that the p−value for corr(x, y) = 0.0070 and the p−value for the Cochran-Armitage
test using scores (1,10,100, 1000) was also 0.0070.

This is not coincidence.

The Cochran-Armitage (CA) Trend Test is the same as

CA = n ∗ [corr(x, y)]2
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data new;
input var1 $ var2 $ corr;
n = 400;
CA = n* (corr ** 2);
df=1;
p = 1-probchi(CA,df);

cards;
x y -0.13495
logx y -0.17849
;
proc print;
run;
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OBS VAR1 VAR2 CORR N CA DF P

1 x y -0.13495 400 7.2846 1 .0069548
2 logx y -0.17849 400 12.7435 1 .0003573

data new;
input var1 $ var2 $ corr;
eff = (corr ** 2);

cards;
x logx 0.82414
;
proc print;
run;

OBS VAR1 VAR2 CORR EFF

1 x logx 0.82414 0.67921
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Using SAS Proc Logistic

• Next, we will use SAS Proc Logistic, which also gives us the SCORE
(Cochran-Armitage Trend) test as well as the Likelihood Ratio Test and Wald test for

H0 : β1 = 0

as well as the logistic regression estimates:
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Proc Logistic

/ * give x, y , and n for row binoimals * /

data one;
input x y n_j;
cards;

1 8 100
10 15 100

100 22 100
1000 26 100
;

proc logistic;
model y / n_j =x;

run;
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/ * SELECTED OUTPUT* /

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6.8146 1 0.0090(1)
Score 7.2849 1 0.0070(2)
Wald 7.0915 1 0.0077

(1) = Likelihood ratio test = Gˆ2
(2) = Cochran-Armitage Trend Test

* WALD Test significant (WALD Chi-Square approx equal to LR & S core)
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The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.7808 0.1692 110.8292 <.0001
x 1 0.000769 0.000289 7.0915 0.0077
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Interpretation

Note, for a 990 unit increase in the dose (from 10 to 1000),

OR(1000 : 10) = eβ̂1(1000−10)

= e.0007688(990)

= 2.14

the odds of some toxicity doubles.

Other Models:

Other possible models could include squared terms, cubic terms, etc. For example, the
model including the squared terms is:

pj =

 
eβ0+β1xj+β2x2

j

1 + e
β0+β1xj+β2x2

j

!
,
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SAS Proc Logistic

proc logistic data=one descending;
model y = x x * x ;
weight count; / * number of individuals with y value * /

run;

/ * Selected Output * /

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.1088 0.2378 78.6214 <.0001
x 1 0.00946 0.00385 6.0320 0.0140
x* x 1 -8.4E-6 3.691E-6 5.1729 0.0229
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Saturated Model

• Since the row margins are fixed, there is one free probability in each row, and the
saturated model has a different probability for each level of xj , i.e., the saturated
model has R parameters.

• One way to get a saturated model is to use powers up to R − 1, i.e.,

pj =

0
@ e

β0+β1xj+β2x2
j+...+βR−1xR−1

j

1 + e
β0+β1x2

j
+βR−1xR−1

j

1
A ,

• Alternatively, you get the same fit by fitting a separate probability for each row
(separately maximizing each row binomial), giving the MLE

bpj =
yj

nj
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• Another way to fit the saturated model is to have a model with an intercept and (R − 1)

row effects:

pj =

 
eβ0+βj

1 + eβ0+βj

!
,

where we constrain βR = 0, since there are only R free parameters. X = R is often
thought of as the ‘reference group’.

• In particular,

p1 =

„
eβ0+β1

1 + eβ0+β1

«
,

p2 =

„
eβ0+β2

1 + eβ0+β2

«
,

pR−1 =

 
eβ0+βR−1

1 + eβ0+βR−1

!
,

pR =

„
eβ0

1 + eβ0

«
,

• This model may be especially appropriate when the rows are not ordered, i.e., the
rows may correspond to race, treatment, gender, etc...

Lecture 14: GLM Estimation and Logistic Regression – p. 40/62



Odds Ratios when rows are not ordinal

• Consider saturated model with R = 3, where

X = 1 = Drug A,

X = 2 = Drug B,

X = 3 = Placebo (drug C),

and Y = 1 is a successful response.

• We fit the model
logit(pj) = β0 + βj

with β3 = 0 for group 3 (placebo, the reference group).

• Then, for an individual on placebo,

logit(p3) = β0

• For an individual on drug A,
logit(p1) = β0 + β1

• For an individual on drug B,
logit(p2) = β0 + β2
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• Then,

β1 = logit(p1) − logit(p3) = log

„
p1/(1 − p1)

p3/(1 − p3)

«

and

β2 = logit(p2) − logit(p3) = log

„
p2/(1 − p2)

p3/(1 − p3)

«

• Thus, β1 is the log-odds ratio for drug A relative to the placebo, and β2 is the log odds
ratio for drug B relative to the placebo.

• Suppose you want to compare drugs A and B. Then the log-odds ratio between A and
B is

β1 − β2 = [logit(p1) − logit(p3)] − [logit(p2) − logit(p3)]

= [logit(p1) − logit(p2)]

= log
“

p1/(1−p1)
p2/(1−p2)

”
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The estimate is
β̂1 − β̂2

and the variance can be estimated by

dV ar(β̂1 − β̂2) = dV ar(β̂1) + dV ar(β̂2) − 2dCov(β̂1, β̂2)

(the two are correlated because they both contain logit(bp3)).

Most computer packages will print out the covariances so that you can do it by hand, or, they
will allow you to estimate the variance of a contrast of the form

cβ,

where c is a vector of constants.
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Here

c = [0 1 − 1]

and
β = [β0 β1 β2]′

In particular, for this example,

cbβ = [0 1 − 1]bβ = bβ1 − bβ2,

and

V ar[cbβ] = cV ar[bβ]c′ =
dV ar(β̂1) + dV ar(β̂2) − 2dCov(β̂1, β̂2)
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Example

The toxicity data:
Toxicity

| SOME | NONE | Total
---------+--------+-------+

1 | 8 | 92 | 100
---------+--------+-------+

Dose (mg) 10 | 15 | 85 | 100
---------+--------+-------+

100 | 22 | 78 | 100
---------+--------+-------+

1000 | 26 | 74 | 100
---------+--------+-------+
Total 71 329 400

We are not going to take the row ordering into account, and will fit the model,

logit(pj) = β0 + βj

where we constrain β4 = 0.
We are going to use the computer packages to test

log[OR(100 : 10)] = logit(p3) − logit(p2) = β3 − β2 = 0
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USING SAS PROC LOGISTIC

data one;
input x y count;

if x = 1 then x1=1; else x1=0;
if x = 10 then x2=1; else x2=0;
if x = 100 then x3=1; else x3=0;

cards;
1 0 8
1 1 92

10 0 15
10 1 85

100 0 22
100 1 78

1000 0 26
1000 1 74
;
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proc logistic data=one;
model y = x1 x2 x3 ;

freq count;
contrast ’logOR for 100 vs 10’ x2 -1 x3 1;

run;

/ * SELECTED OUTPUT* /
Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.0460 0.2280 21.0495 <.0001
x1 1 -1.3962 0.4334 10.3785 0.0013
x2 1 -0.6886 0.3611 3.6364 0.0565
x3 1 -0.2197 0.3320 0.4378 0.5082
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Contrast Test Results

Wald
Contrast DF Chi-Square Pr > ChiSq

logOR for 100 vs 10 1 1.6086 0.2047

proc logistic data=one;
class x /param=ref ; / * sets x=4 as reference group * /

model y = x ;
freq count;
contrast ’logOR for 100 vs 10’ x 0 -1 1 0;

run;
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/ * SELECTED OUTPUT* /

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.0460 0.2280 21.0495 <.0001
x 1 1 -1.3962 0.4334 10.3785 0.0013
x 10 1 -0.6886 0.3611 3.6364 0.0565
x 100 1 -0.2197 0.3320 0.4378 0.5082

Contrast Test Results

Wald
Contrast DF Chi-Square Pr > ChiSq

logOR for 100 vs 10 1 1.6086 0.2047

Lecture 14: GLM Estimation and Logistic Regression – p. 49/62



Gooodness-of-Fit

• The likelihood ratio statistic for a given model M1 with estimates p̃j versus a ‘saturated’

model in which bpj = yj/nj , is often called the deviance, denoted by D2,

D2(M1) = 2{log[L(Sat)] − log[L(M1)]

= 2
PR

j=1

»
yj log

„
yj

nj p̃j

«
+ (nj − yj) log

„
nj−yj

nj(1−p̃j)

«–

= 2
PR

j=1

P2
k=1 Ojk log

“
Ojk

Ejk

”

∼ χ2
P

under the null, where

P = # parameters in sat. model − # parameters in M1

• In general, the deviance D2 is often used as a measure of overall goodness-of-fit of
the model, and is a test statistic form terms left out of the model.
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SAS Proc Logistic

data one;
data one;
input x y count;
cards;

1 1 8
1 0 92

10 1 15
10 0 85

100 1 22
100 0 78

1000 1 26
1000 0 74
;
proc logistic descending;

model y = x /aggregate scale=d / * specify for deviance * / ;
freq count;

run;
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/ * Selected Output * /
Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 2 6.9618 3.4809 0.0308
Pearson 2 6.7383 3.3692 0.0344

Number of unique profiles: 4

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.7808 0.3156 31.8392 <.0001
x 1 0.000769 0.000539 2.0373 0.1535

Here we would reject the null hypothesis of a “good fit”.
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Likelihood Ratio Statistic for Nested Models

• Sometimes you can look at a broader model than the one of interest to test for
‘Goodness-of-Fit’.

• For example, suppose you want to see if Model 1 fits,
Model 1:

pj =

 
eβ0+β1xj

1 + eβ0+β1xj

!
.

• This model is nested in (model 1 nested in model 2)
Model 2:

pj =

 
eβ0+β1xj+β2x2

j

1 + e
β0+β1xj+β2x2

j

!
,

• Recall, the deviance D2 is sort of like a SUMS of SQUARES ERROR (error in the
given model versus the saturated), and a smaller model will always have the same or
more error than the bigger model.
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• To test for significance of parameters in model 2 versus model 1, you can use

∆D2(M2|M1) = D2(M1) − D2(M2)

which is the ‘change in D2’ for model 2 versus model 1.

• If the smaller model fits, in large samples,

∆D2(M2|M1) ∼ χ2
P ,

where P parameters are set to 0 to get the smaller model.
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UsingG
2

• As before, another popular statistic is G2, which is the likelihood ratio test statistic for
whether the parameters, except the intercept β0, are 0 (i.e., the significance of
parameters in the model).

• For G2, the larger model always has bigger G2 since it has more parameters (sort of
like SUMS of SQUARES REGRESSION)

• Again, to test for significance of parameters in model 2 versus model 1, you can use

∆G2(M2|M1) = G2(M2) − G2(M1)

which is the ‘change in G2’ for model 2 versus model 1.

• Thus, the likelihood ratio statistic for two nested models can be calculated using either
∆G2 or ∆D2.

• Note that ∆G2 = ∆D2 when testing the same two models (we will see this empirically
in an example)
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Residuals

• Sometimes you can look at residuals to see where the model does not fit well.

• The standard (or unadjusted) Pearson residuals

ej =

 
[yj − njbpj ]

2

p
njbpj(1 − bpj)

!

If the model fits, then, asymptotically,

ej ∼ N(0, 1)

(as nj → ∞)

• Note that, the score statistic (Pearson’s chi-square) versus the saturated model is

X2 =
RX

j=1

e2
j
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• Another popular residual is the ‘Deviance residual’. The deviance residual is defined as

dj = ±

s»
yj log

„
yj

njbpj

«
+ (nj − yj) log

„
nj − yj

nj(1 − bpj)

«–
,

where the sign (+ or -) is the same as (yj − njbpj). When yj = 0 or yj = nj , the
deviance residual is defined as

dj =

(
−
p

2nj | log(1 − bpj)| if yj = 0p
2nj | log(bpj)| if yj = nj

.

• When none of the yj equal 0 or nj , then

D2 =
RX

j=1

d2
j
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The toxicity data:

Toxicity

| SOME | NONE | Total
---------+--------+-------+

1 | 8 | 92 | 100
---------+--------+-------+

Dose (mg) 10 | 15 | 85 | 100
---------+--------+-------+

100 | 22 | 78 | 100
---------+--------+-------+

1000 | 26 | 74 | 100
---------+--------+-------+
Total 71 329 400
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Summary of Models

pars. in model pars. not in model
p−value

Model df(G2) G2 df(D2) D2 for D2

(1) Null (β0) 0 0 3 13.78 0.0032
(2) x 1 6.82 2 6.96 0.0308
(3) x, x2 2 11.88 1 1.90 0.1682
(4) SATURATED 3 13.78 0 0 -

Overall, the model with linear and quadratic terms (x, x2) appears to be the best fit.

Comparing Model 3 to 2

∆D2 = 6.96 − 1.90 = 5.06

and
∆G2 = 11.88 − 6.82 = 5.06

both on 1 degrees of freedom: Conclusion x2 is needed in the model
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Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.1088 0.2378 78.6214 <.0001
x 1 0.00946 0.00385 6.0320 0.0140
x* x 1 -8.4E-6 3.691E-6 5.1729 0.0229

Note, the parameter estimate for the coefficient of x2 is very small, but that is because x2 is
large, especially when x = 1000. Maybe I should have chosen log(x) as the covariate.
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• For model (3), (x, x2), the odds ratio for xj versus xj′ is

OR(xj : xj′ ) =
pj/(1−pj)

pj′/(1−pj′ )

= e
β0+β1xj+β2x2

j

e
β0+β1x

j′
+β2x2

j′

= e
β1(xj−xj′ )+β1(x2

j−x2
j′

)

• Then, the odds ratio for xj = 100 versus xj′ = 10 is

OR(100 : 10) = e.00946(100−10)−.0000084(1002
−102)

= 2.15

The observed OR for these two rows is

22 · 85

15 · 78
= 1.6,

so the model overestimates this odds ratio by a little.
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Residuals

The Pearson and Deviance residuals are

x y Pearson Deviance
1. 1 1 -.9351095 -.9766505
2. 1 0 -.9351095 -.9766505
3. 10 1 1.004686 .9689428
4. 10 0 1.004686 .9689428
5. 100 1 -.0777304 -.0778652
6. 100 0 -.0777304 -.0778652
7. 1000 1 .0006648 .0006648
8. 1000 0 .0006648 .0006648

Pearson’s chi-square for the model (x, x2) versus the saturated model is the sum of squares
of the Pearson residuals, and equals
1.89 (1 df) p−value = 0.1692.

This is similar to the Deviance for the model (x, x2) versus the saturated model,
D2 = 1.90 (1 df) p−value = 0.1682
The model (x, x2) seems to fit OK.
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