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GLM for Counts

Situation: The outcome variable Y is a count

GLM for counts have as it’s random component the Poisson Distribution

1. Number of cargo ships damaged by waves (classic example given by McCullagh &
Nelder, 1989)

2. Number of deaths due to AIDs in Australia per quarter

3. Daily homicide counts in California
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Poisson Rates

In some cases, the counts are affected by the amount of “exposure”.
For example, the number of homicides may be affected by

1. The underlying population size

2. The local gun laws

3. The size of the police force

When this occurs, we may want to take into account the “denominator” and form a rate such
as

Y/t = rate

where t represents a quantification of exposure.

We will also look that this defined as

Y = rate ∗ t
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Components of the GLM

The components of a GLM for a count response are

1. Random Component: Poisson distribution and model the expected value of Y ,
denoted by E(Y ) = µ.

2. Systematic component: For now we will look at just one explanatory variable x

3. Link: We could use
(a) Identity Link which would give us

µ = α + βx

But, just as for binomial data, the model can yield µ < 0 (Note µ ≥ 0)

(b) Log Link (most common and the canonical link)

log(µ) = α + βx
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Poisson Loglinear Model

Our model is
log(µ) = α + βx

Since the log of the expected value of Y is a linear function of explanatory variable(s), and
the expected value of Y is a multiplicative function of x:

µ = eα+βx

= eαeβx

What does this mean for µ? How do we interpret β?
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Consider 2 values of x, say (x1&x2) such that the difference between them equals 1. For
example, x1 = 10 and x2 = 11.

Denote, µ1 = E(Y |x = 10). Then

µ1 = eαeβ10

and the expected value when x = 11 is

µ2 = eαeβ11

= eαeβ10eβ

= µ1eβ

Thus, a 1-unit change in x has a multiplicative effect on the mean of Y .
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1. If β = 0, then e0 = 1 and µ2 is the same as µ1. That is, µ = E(Y ) is not related to x.

2. if β > 0, then eβ > 1 and µ2 is eβ times larger than µ1.

3. if β < 0, then eβ < 1 and µ2 is eβ times smaller than µ1.
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Example

The following data represents the number of deaths from AIDS in Australia per quarter in
1983 - 1986.

Month Period Deaths Month Period Deaths

1 0 8 18
2 1 9 23
3 2 10 31
4 3 11 20
5 1 12 25
6 4 13 37
7 9 14 45
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Graphically, the data look like
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Poisson Regression Model

We can model the Poisson regression model using GENMOD as
proc genmod;
model y = x /dist=poi link = log;

run;

and get the following results:
Analysis Of Parameter Estimates

Standard Chi-
Parameter DF Estimate Error Square Pr > ChiSq

Intercept 1 0.3396 0.2512 1.83 0.1763
x 1 0.2565 0.0220 135.48 <.0001

Therefore, our estimated model is

log(µ) = 0.3396 + 0.2565x
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Interpretation

We see that for a 1-unit increase in month, the expectation (or mean) number of AIDs deaths
increases by a factor of e0.2565 = 1.292 with a 95% C.I. of
(exp(0.2133), exp(0.2997)) = (1.238, 1.349).

Month Observed Deaths Fitted

1 0 1.815026
2 1 2.345738
3 2 3.031629
4 3 3.918073
5 1 5.063713
6 4 6.544336
7 9 8.457892
8 18 10.93097
9 23 14.12717

10 31 18.25794
11 20 23.59654
12 25 30.49614
13 37 39.41317
14 45 50.93753
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Interpretation of the Poisson Regression Model

1. The marginal effect of xi (month period i) on µi (expected number of deaths in month
period i) is for a 1-unit increase in month period the estimated count increases by a
factor of e0.2565 = 1.292

2. That is, the number of deaths is growing at the rate of 29% per year

3. We can look at the predicted probability of number of deaths given a value of xi.
Recall Yi ∼Poisson(µi). Thus

bP (Yi = y) =
e−µ̂i µ̂y

i

y!

where
µ̂i = 0.3396 + 0.2565xi
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For example, consider Month Period 3, the probability of y deaths would be

bP (Yi = y) =
e−(0.3396+0.2565·3)(0.3396 + 0.2565 · 3)y

y!

and for y = 1

bP (Yi = 1) =
e−(0.3396+0.2565·3)(0.3396+0.2565·3)1

1

= 0.3658
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Poisson Regression for Rate Data

• Events may occur over time or space (exposure)

• And the amount of exposure may vary from observation to observation

Let
Y = count (e.g., number of observed cases)

t = days in the community

Then, the sample rate of occurrence = Y/t with the expected value of

E(Y/t) =
1

t
E(Y ) = µ/t
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The Poisson regression model with log link for the expected rate of occurrence is

log(µ/t) = α + βx

log(µ) − log(t) = α + βx

log(µ) = α + βx + log(t)

The term “log(t)” is an adjustment term.

It is called the offset.

In terms of the multiplicative model, the Poisson regression model with a log link for rate data
is

µ = teαeβx

Written in this form, it is clear that

1. The expected value of counts depends on both t and x

2. Both t and x are observed and not parameters of the distribution
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Example

• Suppose you observe Y1 = 15 cases of leukemia in Cambridge, and Y2 = 30 cases of
leukemia in Boston in 1990.

• The number of cases in Cambridge has distribution

Y1 ∼ Poi(µ1)

and the number of cases in Boston has distribution

Y2 ∼ Poi(µ2)

• You want to test if the expected number of cases in Cambridge and Boston is the
same:

H0 : µ1 = µ2
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• We can form a simple WALD (difference in means over non-null standard error) test
statistic:

• Since,
E(Yj) = V ar(Yj) = µj ,

when
Yj ∼ Poi(µj),

• And the MLE of µj is

µ̂j = yj and dV ar(Yj) = µ̂j = yj

• The WALD statistic for
H0 : µ1 = µ2

is

Z = µ̂1−µ̂2q
dV ar(µ̂1−µ̂2)

= µ̂1−µ̂2q
dV ar(µ̂1)+ dV ar(µ̂2)

= y1−y2√
y1+y2
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Wald Test on Computer

• The easiest way to get this test statistic on the computer is using a linear regression
model:

µj = β0 + β1xj ,

where

xj =

(
1 if group 1 (Cambridge)
0 if group 2 (Boston)

.

• In other words
µ1 = β0 + β1

µ2 = β0

• Note that
µ1 − µ2 = β1

• If
Ho : β1 = µ1 − µ2 = 0,

then
Ho : µ1 = µ2
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SAS PROC GENMOD

data one;
input city cases;
cards;
1 15
0 30
;

proc genmod data=one;
model cases = city / link=id /* identity or linear model */

dist = poi;
run;
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/* SELECTED OUTPUT */

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 30.0000 5.4772 19.2648 40.7352 30.00 <.0001
city 1 -15.0000 6.7082 -28.1478 -1.8522 5.00 0.0253

The Wald Statistic from this output is

Z2 =

„
y1 − y2√
y1 + y2

«2

= 5

with p = .0253 so we reject the null that the expected number of cases are the same.
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Log-linear model

• Since the number of cases has to be non-negative, as before, you may want to use a
log-linear model

log(µj) = β0 + β1xj

or, equivalently,
µj = exp(β0 + β1xj)

where

xj =

(
1 if group 1 (Cambridge)
0 if group 2 (Boston)

.
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• In other words
log(µ1) = β0 + β1

log(µ2) = β0

• Note that
log(µ1) − log(µ2) = β1

• If
Ho : β1 = log(µ1) − log(µ2) = 0,

then
Ho : µ1 = µ2 = exp(β0)

• Then, we can use the Wald Statistic

Z =
bβ1q

dV ar(bβ1)

=
log(µ̂1)−log(µ̂2)q

dV ar[log(µ̂1)]+ dV ar[log(µ̂2)]
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SAS PROC GENMOD

data one;
input city cases;
cards;
1 15
0 30
;

proc genmod data=one;
model cases = city / link=log dist = poi;

run;
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/* SELECTED OUTPUT */

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 3.4012 0.1826 3.0434 3.7590 347.04 <.0001
city 1 -0.6931 0.3162 -1.3129 -0.0734 4.80 0.0284

The Wald Statistic from this output is

Z2 =

0
B@

bβ1q
dV ar(bβ1)

1
CA

2

= 4.8

with p = .0284 so we reject the null that the expected number of cases are the same.
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Main Interest: Rates

• However, what you are probably really more interested in, is if the “rate” of leukemia in
the two cities are the same.

• Here, we define the rate as the number of events per number at risk in a given time.

• In particular, the number of cases could be higher in Boston because there are many
more people who live in Boston than Cambridge.

• Because we want to look at the rate, we rewrite

µj = Expected number of events in population j

= rjTj
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where

rj = rate of events in population j

= # leukemia cases per 10000 at risk
per year in Cambridge

= # leukemia cases per person-years at risk
in Cambridge

and
Tj = persons-years at risk in city j in 1990

Intuitively, we can think of Tj as

2
64

number of people living
in City j at any time
in 1990

3
75 ×

2
64

average amount of time a
person spent in City j

in 1990

3
75

Usually Tj is provided by an investigator.
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• For example, suppose the true rate of leukemia in Cambridge is

r1 = 10 leukemia cases per 100,000 person-years

and
T1 = 500,000 person-years

• Then, the expected number of cases is

µj = rjTj

=
“

10 cases
100,000 person-year

”
500, 000person-years

= 50 cases

• Note, also, that a ‘rate’ always involves time

rj =
# events

(number at risk) × (time at risk)
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Hypotheses of Interest

• Thus, if we were really interested in testing whether the rates were the same; the
hypothesis

H0 : µ1 = µ2,

or, in terms of the rj ’s
H0 : r1T1 = r2T2

is not a valid test of
H0 : r1 = r2

unless T1 = T2.

• Since Cambridge and Boston have very different population sizes, we would think that
the WALD test statistic for

H0 : µ1 = µ2,

is not answering our question of interest.
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WALD Test for rates

• The WALD statistic for
H0 : r1 = r2

is

Z =
br1 − br2q

dV ar(br1) + dV ar(br2)

,

where the brj are estimated under the alternative.

• Throughout, we assume that Tj is known

• Then, with
Y1 ∼ Poi(µ1) = Poi(r1T1)

and
Y2 ∼ Poi(µ2) = Poi(r2T2)
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The MLE’s (under the alternative that the rates are not equal) are

Yj = µ̂j = brjTj ,

or, equivalently,

brj =
Yj

Tj

=
observed events in group j

person-years exposure

It’s more common to deal with log’s of rates.

Lecture 13: GLM for Poisson Data – p. 30/49



Log-linear model

• As with the cases, since rates always have to be positive (although not constrained to
be in [0,1]):

rj > 0

so you often see rj modelled as a log-linear model

• Since the number of cases has to be non-negative, as before, you may want to use a
log-linear model

log(rj) = β0 + β1xj

or, equivalently,
rj = exp(β0 + β1xj)

where

xj =

(
1 if group 1 (Cambridge)
0 if group 2 (Boston)

.

• In other words
log(r1) = β0 + β1

log(r2) = β0
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• Note that

log(r1) − log(r2) = log

„
r1

r2

«
= β1,

where the ratio of the two rates,

RR =
r1

r2
= exp(β1)

is often called the rate ratio.

• If

RR =
r1

r2
= exp(β1) = 1

or, equivalently, if
Ho : β1 = log(r1) − log(r2) = 0,

then the rates in the two cities are the same:

Ho : r1 = r2 = exp(β0)

Lecture 13: GLM for Poisson Data – p. 32/49



• We can use maximum likelihood on the computer to get a Wald test that

Ho : β1 = log(r1) − log(r2) = 0,

• With brj =
Yj

Tj
, the Wald Statistic is

Z =
bβ1q

dV ar(bβ1)

=
log(br1)−log(br2)q

dV ar[log(br1)]+ dV ar[log(br2)]
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Estimating Rate Ratio

• We can estimate the rate ratio on the computer as well,

dRR =
br1

br2
= exp(bβ1)

• One can get a 95% confidence interval on the rate ratio by first getting a confidence
interval on the log(RR) scale

β1 = log(RR) = log

„
r1

r2

«

and then exponentiating the endpoints

• In particular, the 95% CI for the RR is

exp{[bβ1] ± 1.96

q
dV ar[bβ1]}.
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Estimation on Computer

• We want to estimate the regression parameters for the model

log(rj) = β0 + β1xj ,

• For city j, we have the number of cases Yj is Poisson with mean

µj = rjTj

• In particular, µj has the log-linear model

log(µj) = log(rj) + log(Tj) = (β0 + β1xj) + log(Tj)

• We can think of log(Tj) as being a covariate in the model for log(µj), but the
coefficient of log(Tj) in the model is 1.

• A covariate with coefficient 1 is called an ‘offset’.
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• For Cambridge, the model is

log(µ1) = log(r1) + log(T1) = β0 + β1 + log(T1)

• For Boston, the model is

log(µ2) = log(r2) + log(T2) = β0 + log(T2)

• Then, in SAS Proc Genmod, you would use a log-linear model for the number of cases
Y1 and Y2, with the above log-linear model.

• In Proc Genmod, you specify log(Tj) as an offset.
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Example

• Suppose you observe
Y1 = 15

cases of leukemia in Cambridge, and

Y2 = 30

cases of leukemia in Boston in 1990.

• Suppose the average time than an individual lived in one of the cities in 1990 was the
same, and was .75 year.

• Suppose there were T1 = 500, 000 people living in Cambridge at sometime in 1990
and T2 = 3, 000, 000 people who lived in Boston at sometime in 1990.

• Then, the person-years for Cambridge are

T1 = (500, 000)(.75) = 375, 000

and for Boston are
T2 = (3, 000, 000)(.75) = 2, 225, 000
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The rates in the two cities are:
Cambridge Boston
15/375,000 30/2,225,000
.0000400 .0000135

The Estimated Rate Ratio is:

dRR =
br1

br2
=

15/375, 000

30/2, 225, 000
= 2.97

Thus, the rate is almost 3 times higher in Cambridge.
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SAS PROC GENMOD

data one;
input city cases exposure;
log_T = log(exposure);

cards;
1 15 375000
0 30 2225000
;

proc genmod data=one;
model cases = city / link=log dist = poi offset=log_T ;
estimate ’logrr’ city 1 /exp;

run;
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/* SELECTED OUTPUT */

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -11.2141 0.1826 -11.5719 -10.8562 3772.66 <.0001
city 1 1.0874 0.3162 0.4676 1.7072 11.83 0.0006

Contrast Estimate Results

Standard Chi-
Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

logrr 1.0874 0.3162 0.05 0.4676 1.7072 11.83 0.0006
Exp(logrr) 2.9667 0.9381 0.05 1.5962 5.5137
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The Wald Statistic from this output is

Z2 =

0
B@

bβ1q
dV ar(bβ1)

1
CA

2

= 11.83

with p = 0.0006 so we reject the null that the expected number of cases are the same.

The estimate RR is obtained as:
Exp(logrr)= 2.9667

We also get a 95% CI fr the RR as:

[1.5962, 5.5137]
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Overdispersion

• For data modelled as counts (i.e., Poisson), we have an inherent limitation

• One “feature” of a Poisson R.V. is that the mean = variance = µ

• When the data observed have a variance greater than predicted under the GLM, we
have overdispersion

• A common cause is subject heterogeneity

Horseshoe crab example:
Suppose, crab width, weight, color and spine condition are the four predictors that affect a
female crab’s number of satellites residing nearby (additional male crab partners) (Y ).
Suppose that Y has a Poisson distribution at each of the fixed combination of those
predictors.

If we model Y as a function of only one of the predictors, we would underestimate the
variance of Y since the variance if Y is comprised of all predictor combinations.
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Consistency of Parameter Estimates

• Even in the presence of overdispersion, the parameter estimates β’s are consistent.

• However, the estimated standard errors will be too small (recall the actual variance is
greater than the modelled variance)

• Testing for overdispersion in Poisson data is simple.

• The relationship of the Deviance to the model df is the key

• If Deviance / df > 1, then overdispersion may be present

• If Deviance / df < 1, then underdispersion may be present

• Recall a χ2 with df = g has a mean of g.

• We will develop a test to see what is a statistically significant amount of over/under
dispersion (usually overdispersion)
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Negative Binomial Distribution

The negative binomial distribution is used when the number of successes is fixed and we’re
interested in the number of failures before reaching the fixed number of successes.

The negative binomial distribution has the PDF

f(y; k, µ) =
Γ(y + k)

Γ(k)Γ(y + 1)

„
k

µ + k

«k „
1 − k

µ + k

«y

The negative binomial distribution has E(Y ) = µ and var(Y ) = µ + µ2/k

The index k−1 is called the dispersion parameter.

If k = 0, then we have the Poisson distribution.
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Fitting a Negative Binomial Distribution

All that is required to fit a Negative Binomial Model in GENMOD is to specify “dist = nb”

Recall our AIDs death example:

Month Period Deaths Month Period Deaths

1 0 8 18
2 1 9 23
3 2 10 31
4 3 11 20
5 1 12 25
6 4 13 37
7 9 14 45
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Selected Results

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 12 29.6535 2.4711
Scaled Deviance 12 29.6535 2.4711
Pearson Chi-Square 12 28.8473 2.4039
Scaled Pearson X2 12 28.8473 2.4039
Log Likelihood 472.0625

Here, we see a value of 2.4711 for the Deviance / df ratio. There is the potential for
overdispersion since D/df > 1.
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Fitting NB Model

proc genmod;
model y = x /dist=nb link = log;

run;

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 12 14.5844 1.2154
Scaled Deviance 12 14.5844 1.2154
Pearson Chi-Square 12 14.0275 1.1690
Scaled Pearson X2 12 14.0275 1.1690
Log Likelihood 474.3380

Algorithm converged.
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Testing k = 0

To test
H0 : k = 0

vs.
HA : k 6= 0

We can use a LRT.

LRT = −2( LL (Poisson) - LL (negative binomial))
= −2(472.0625 − 474.3380)

= 4.551

on 1 df . Thus, we would reject H0 and conclude that our data is overdispersed using the
Poisson model.

The interpretation of results from a NB regression are the same as the Poisson regression.
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Analysis Of Parameter Estimates

Standard Chi-
Parameter DF Estimate Error Square Pr > ChiSq

Intercept 1 -0.0378 0.4050 0.01 0.9257
x 1 0.2963 0.0410 52.14 <.0001
Dispersion 1 0.0934 0.0763

Where the estimated variance of Y would be

̂V ar(Y ) = bµ + 0.0934cµ2

where log bµ = bα + bβx
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