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Bernoulli Random Variables

• Many variables can have only 2 possible values.

• That is, they are Bernoulli random variables

• Recall, for Y = 0, 1

• π is the probability of Y = 1

• E(Y ) = µ = π

• V ar(Y ) = µ(1 − µ) = π(1 − π)

Lecture 12: Generalized Linear Models for Binary Data – p. 2/42



Binomial Distribution

When we have n independent trials and take the sum of the Y ′s, we have a binomial
distribution with

• mean = nπ

• variance =nπ(1 − π)

In general, we are interested in the parameter π

We will consider models for π, which can vary according to some values of an explanatory
variable(s) (i.e., x1, x2, . . . , xp)

To emphasize that π changes with respect to (w.r.t.) the x′s, we write

π(x) = P (Y = 1|x1, x2, . . . , xp)
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Linear Probability Model

• One way to model π(x) is to use a linear model.

• For simplicity, lets consider the case where we only have one explanatory variable

• Thus,
π(x) = α + βx

• Using the terminology of GLMs,

1. The random component follows a binomial distribution

2. The link is the identity link
3. The systematic component contains an intercept, α and one covariate, x along

with its parameter, β.
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Notes about the Linear Probability Model

The E(Y ) = π(x) changes with the value of x

If β < 0, then π(x) decreases as x increases (monotonically decreasing)

If β > 0, then π(x) increases as x increases (monotonically increasing)

However, since π(x) is a probability, it must be such that π(x) ∈ [0, 1]∀x

For a given α, β, there could be values of x that produce estimated probabilities out of range.
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Example

Suppose you have an achievement score that ranges in value from 0 to 350 and you have
data on n = 600 students.

You want to model the probability that an individual is accepted to a 4 year college based on
the achievement score.

Then, attendance of college is a Bernoulli random variable with a ‘success’ (Yi = 1) being
student i is accepted and a ‘failure’ (Yi = 0) being student i is not accepted.

xi is the achievement score for the ith individual.
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Summary data

Achievement Score
<200 201-225 226-250 251-275 276-300 301-325 326-350

Not Accepted (0) 40 69 66 62 38 14 3
Accepted (1) 8 20 37 80 73 63 27
P(Y=1) .17 .22 .36 .56 .66 .82 .90

For summary, the achievement score has been grouped into blocks of 25.

P (Y = 1|x < 200) = 8/48 = .166666
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Test of Independence

Suppose, prior to formulating a regression model for the data, lets consider the simple
hypothesis of independence.

After inputting the data into SAS and using PROC FREQ (you should feel comfortable
recreating this by now) you get the following summary results

Statistic df Value p−value

Pearsons X2 6 119.83 <0.001
Likelihood ratio G2 6 129.00 <0.001

We reject the null hypothesis that attendance and score are independent.

We will develop a regression model to explain how they are related.
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Linear Probability Model

For this data, I do not have the raw data, so we can choose the values of x such that they
represent the midpoint of each interval.

That is, x ∈ (175, 213, 239, 264, 289, 314, 339)

We can implement the linear probability model in GENMOD by the following:

proc genmod descending;
freq count;
model attend = score /link=identity dist=bin;

run;

Using the following data structure
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Data

data one;
input attend score count;
cards;
0 175 40
0 213 69
0 239 66
0 264 62
0 289 38
0 314 14
0 339 3
1 175 8
1 213 20
1 239 37
1 264 80
1 289 73
1 314 63
1 339 27
;

run;
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Resulting Estimated Model

Standard
Parameter DF Estimate Error

Intercept 1 -0.7456 0.0812
score 1 0.0049 0.0003

Or in terms of π(x),

π̂(x) = α̂ + β̂x

= −0.7456 + 0.0049x

Therefore, for each 10 point increase in the score, the probability of admission increases by
0.05 (=10*0.0049)
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Notes aboutπ(x)

The following table summarizes the observed and estimated (or “fitted” π̂(x))

x n y1 π(x) (y1/n) π̂(x)

175 48 8 0.167 0.112
213 89 20 0.225 0.298
239 103 37 0.359 0.426
264 142 80 0.563 0.548
289 111 73 0.658 0.671
314 77 63 0.818 0.793
339 30 27 0.900 0.916

For this data, the linear probability model seems to function rather well.

For the domain of x, all of the estimated or fitted values for π(x) are in [0, 1].

However, this need not always be the case.
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Limitations of the Linear Probability Model

• Even though the parameters of the linear model are easily interpreted, there are
limitations

• A major problem with a linear model for π(x) is that it can yield predicted values of π

less than 0 and/or greater than 1.

• Example: These data are from Agresti (1990). Look for the data in the course
webpage. The explanatory variable is a “labeling index” (LI) which measures the
proliferative activity of cells after a patient receives an injection of a drug for treating
cancer. The response variable is whether the patient achieved remission.
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The estimated equation is
π̂(x) = −0.2254 + 0.0278LI

with a full tabulated fitted values of

Number of Number of
LI Cases Remissions π̂

8 2 0 -0.003
10 2 0 0.053
12 3 0 0.190
14 3 0 0.164
· · · · · · · · · · · ·

38 3 2 0.832

Here, we observe an undefined fitted value for LI=8.
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Why are we using GENMOD and Not GLM?

Recall the Attendance and Test Score example.

We fit the data using PROC GENMOD. Why?

Before we answer this question, could we have fit the model in PROC GLM?
proc glm;

freq count;
model attend = score;
run;
quit;
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Selected Results

GLM Results
Standard

Parameter Estimate Error

Intercept -.8215401218 0.11310615
score 0.0051377844 0.00042956

GENMOD Results
Standard

Parameter DF Estimate Error

Intercept 1 -0.7456 0.0812
score 1 0.0049 0.0003

These look close, so what is wrong?
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Non-constant Variance

The linear probability model for binary data is not an ordinary simple linear regression
problem, because

1. Non-Constant Variance
• The variance of the dichotomous responses Y for each subject depends on x.

• That is, The variance is not constant across values of the explanatory variable
• The variance is

V ar(Y ) = π(x)(1 − π(x))

• Since the variance is not constant, maximum likelihood estimators of the model
parameters have smaller standard errors than least squared estimators.

• Technically speaking, ML is more efficient than least squares when you have
non-constant variance.

2. Y is Bernoulli and not Normal

GENMOD uses ML based on the distribution specified in the model statement. We’ll cover
this concept in more detail later.
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Additional Examination of the Relationship amongπ(x)

andx

In many cases, we would expect to see a “non-linear” association among π(x) and x.

For example, consider the probability of buying a new car as a function of household salary.

For changes in 10,000 dollar increments, we would expect large jumps in probability as
salary increased from 10,000 to 20,000; 20,000 to 30,000, etc. However, if annual salary
was in the neighborhood of $1,000,000, a change from 1,000,000 to 1,010,000 would result
in only a small change in probability.

A linear model is not capable of this tendency.
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Ideal Properties for a model ofπ(x)

Properties a curve should have for modeling the relationship between π(x) and x

1. A fixed change in x should have a smaller effect when π is close to 0 or 1 than when it
is closer to the middle of the range for π.

2. The relationship between π(x) and x is usually monotonic.

Therefore, we want some sort of “S” curve as our model.

We will examine two common non-linear models: the logistic and the probit models
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Picture of a Monotonically Increasing S Curve

(picture to be drawn in class)
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Logistic Model

One of the most common non-linear model for the conditional expectation of a bernoulli
variable is the logistic model.

Instead of a linear model, consider

π(x) =
exp(α + βx)

1 + exp(α + βx)

For β < 0
As x → ∞, π(x) ↓ 0

For β > 0
As x → ∞, π(x) ↑ 1

As we discussed previously, the link for a logistic model is the logit transformation

log(
π(x)

1 + π(x)
) = logit(π(x)) = α + βx
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Snoring Example

Heart Disease Proportion
Snoring Yes No Yes

Never 24 1355 0.017
Occasionally 35 603 0.055
Nearly every night 21 192 0.099
Every night 30 224 0.118

Our outcome is heart disease, and in order to use the ordinal levels of snoring, we need to
select scores.

A set (0, 2 , 4, 5) seems to capture the relative magnitude of the differences among the
categories.
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Alternative Data Structure

• Previously, we looked at modeling the binomial outcome directly (so called “single trial”
structure).

• You can in SAS use the “event/trials” syntax.

For Event/trial data, you would enter the data as
data two;

input snoring hdyes hdno;
hdtotal = hdyes + hdno;
cards;
0 24 1355
2 35 603
4 21 192
5 30 224
;

run;
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Advantages of Event/Trials

The advantages of the event/trial layout are:

1. If you have tabular data, you will need to type less data into your program

2. As we will see, you do not need to worry about the “descending” option

3. It is the most common layout for Epi data (“cases” are grouped by factor levels of x)

The “single trial” syntax is best if you have the raw data (data row i represents the bernoulli
outcome for the ith individual)
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Implementation of Event/Trials in GENMOD

proc genmod;
model hdyes / hdtotal = snoring /dist=bin link=logit;

run;

The results of this model are:
Analysis Of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits

Intercept 1 -3.8662 0.1662 -4.1920 -3.5405
snoring 1 0.3973 0.0500 0.2993 0.4954

Or,
logit(π̂(x)) = −3.87 + 0.40x

Here β > 0 so the fitted probabilities increase with x.
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Table of Fitted Values

Heart Disease Proportion Logit
Snoring Score Yes No Yes Fitted

0 24 1355 0.017404 0.020508
2 35 603 0.054859 0.044294
4 21 192 0.098592 0.093046
5 30 224 0.11811 0.132423
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Alternative Data Input

data three;
input snoring y count;

cards;
0 1 24
0 0 1355
2 1 35
2 0 603
4 1 21
4 0 192
5 1 30
5 0 224

;
run;
proc genmod descending data=three;
freq count;
model y = snoring /dist=bin link=logit;

run;
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Alternative Data Results

Analysis Of Parameter Estimates

Standard
Parameter DF Estimate Error

Intercept 1 -3.8662 0.1662
snoring 1 0.3973 0.0500

Note: these are the same results, as expected, as the event/trials coding.

Lecture 12: Generalized Linear Models for Binary Data – p. 28/42



Notes about Logit Transformation

Recall,
logit(π) = log(π/(1 − π))

The term “logit” was coined to make the previous standard non-linear model, the Probit,
based on the normal distribution.

The logit is the natural parameter of the binomial distribution and as such the logit link is the
canonical link.

Whereas 0 ≤ π ≤ 1, the range for logit(π) is all real numbers, −∞ < logit(π) < ∞

The systematic component, xβ, can be any real number and it will produce a fitted value for
π within (0,1).

The greater the |β|, the greater the steeper the S-Curve
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Probit Link

A monotonically increasing S-shaped curve is similar to the cumulative distribution function
for some random variable.

Therefore, we could model π(x) = F (x) for some cdf F.

To control the shape of the S-curve, we essentially need two parameters - the location and
the “scale”

By selecting the cdf for a normal distribution, we have the flexibility of both the location (by
selection of the mean) and the scale (by selection of the variance).

The probit link is defined as

probit(π) = F−1(X ≤ x)

where F is the standard normal distribution.
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Standard Normal Probit

For example,

probit(0.025) = −1.96

probit(0.05) = −1.64

probit(0.0) = 0.0

probit(0.95) = 1.64

probit(0.975) = 1.96

or in terms of a GLM,
probit(π(x)) = α + βx

where the random component is binomial and the link function is probit.
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Probit Analysis in SAS

Recall our snoring example.

To fit the Probit link in SAS, all you need to do is specify the link as probit in the GENMOD
model statement using either single trial or event coding.

proc genmod descending data=three;
freq count;
model y = snoring /dist=bin link=probit;

run;

---- or ------

proc genmod data=two;
model hdyes / hdtotal = snoring /dist=bin link=probit;
run;
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Selected Results

Analysis Of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits

Intercept 1 -2.0606 0.0704 -2.1986 -1.9225
snoring 1 0.1878 0.0236 0.1415 0.2341

Recall that
π(x) = Φ(α + βx)

so the fitted values are
π̂(x) = Φ(−2.0606 + 0.0236x)
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Summary Slide

Heart Disease Proportion Logit Probit
Snoring Score Yes No Yes Fitted Fitted

0 24 1355 0.017404 0.020508 0.01967054
2 35 603 0.054859 0.044294 0.04599426
4 21 192 0.098592 0.093046 0.09519951
5 30 224 0.11811 0.132423 0.13101632

We see that the Logit and Probit models produce similar results.

Informal Poll:
How many people, prior to this class, have heard of a logistic regression model? How many
for the probit regression model?
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Notes

• Beginning in version 9.1, there is a preliminary release of SAS ODS Graphics

• This produces “publication ready” figures

• Let’s reanalyze the snoring data using PROC LOGISTIC (PROC GENMOD doesn’t yet
have all of the graphics)

• In case you couldn’t guess it, PROC LOGISTIC fits a logistic regression model.
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SAS to Latex

ods latex file="lecsas.tex"
gpath="\\Dbe\teaching\11S Cat Data Analysis\l12"
path="\\Dbe\teaching\11S Cat Data Analysis\l12"
style=science; /* many more styles available */

ods graphics on;
proc logistic descending data=three;
freq count;
model y = snoring;
graphics estprob;

run;
ods graphics off;
ods latex close;
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Example figure
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Recall the Labeling Index Study

• Recall the labeling index study

• The linear probability model did not fit the data well

• Lets consider the logistic model for the analysis
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data labeling;
input li numcase numrem;
cards;
8 2 0
10 2 0
12 3 0
14 3 0
16 3 0
18 1 1
20 3 2
22 2 1
24 1 0
26 1 1
28 1 1
32 1 0
34 1 1
38 3 2
;

run;

ods latex file="lec12bsas.tex"
gpath="\\Dbe_305c_a\teaching\05F Cat Data Analysis\l12"
path="\\Dbe_305c_a\teaching\05F Cat Data Analysis\l12"
style=statistical;

ods graphics on;
proc logistic data=labeling;
model numrem / numcase = li;
graphics estprob;

run;
ods graphics off;
ods latex close;

38-1



SAS Results

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -3.7771 1.3786 7.5064 0.0061
li 1 0.1449 0.0593 5.9594 0.0146

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

li 1.156 1.029 1.298

The odds of remission increase 1.16 times for every 1 unit increase in the labeling index.

Lecture 12: Generalized Linear Models for Binary Data – p. 39/42



Example figure
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Popularity of the Logistic Model

The logistic model has several factors going for it:

1. It uses the canonical link: although not required, many purist favor it.

2. Parameter estimates are log-odds ratios.

3. Parameter estimates for probit models do not have a common meaning. Although, it is
useful for predicting the success probability.

We will examine additional links for binomial data in the near future.
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Modeling Binary data trivia

The earliest non-linear transformation of π dates to 1886 (Fechner)

The probit link was popularized by Gaddum (1933) and Bliss (1934, 1935) in toxicological
experiments.

The term Probit was coined by Bliss

Fisher & Yates (1938) first suggested a logit link function

Berkson (1944) introduced the term “logit” because of the similarity between the logit and
probit models

Lecture 12: Generalized Linear Models for Binary Data – p. 42/42


	Bernoulli Random Variables
	Binomial Distribution
	Linear Probability Model
	Notes about the Linear Probability Model
	Example
	Summary data
	Test of Independence
	Linear Probability Model
	Data
	Resulting Estimated Model
	Notes about $pi (x)$
	Limitations of the Linear Probability Model
	Why are we using GENMOD and Not GLM?
	Selected Results
	Non-constant Variance
	Additional Examination of the Relationship among $pi (x)$
and $x$
	Ideal Properties for a model of $pi (x)$
	Picture of a Monotonically Increasing S Curve
	Logistic Model
	Snoring Example
	Alternative Data Structure
	Advantages of Event/Trials
	Implementation of Event/Trials in GENMOD
	Table of Fitted Values
	Alternative Data Input
	Alternative Data Results
	Notes about Logit Transformation
	Probit Link
	Standard Normal Probit
	Probit Analysis in SAS
	Selected Results
	Summary Slide
	Notes
	SAS to Latex
	Example figure
	Recall the Labeling Index Study
	SAS Results
	Example figure
	Popularity of the Logistic Model
	Modeling Binary data trivia

