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Brief Overview of Statistics

Response Variable

Explanatory Variables | Binary Nominal Continuous

Binary 2 x 2 table Contingency tables  t-tests
logistic regression log-linear models

Nominal Logistic regression Contingency tables  ANOVA
Log-linear models log-linear models

Continuous Dose-response models It depends Multiple regression
logistic regression

Some Continuous Logistic regression It depends ANCOVA

and some categorical

Multiple regression

Note, in general, most common analyses can be approached from a “modelling” approach.
Some such as the log-linear and logistic are topics for this class.
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Motivation for Modeling

Why do we want to “model” data?

e The structural form of the model describes the patterns of interactions or associations
in data.

® Inference for the model parameters provides a way to evaluate which explanatory
variable(s) are related to the response variable(s) while statistically controlling for the
other variables.

e Estimated model parameters provide measures of the strength and importance of
effects.

® A model’s predicted values “smooth” the data - That is, they provide good estimates of
the mean of the response variable.

e Modeling enables use to examine general extensions to the methods we have studied
thus far.

Lecture 11: Introduction to Generalized Linear Models — p. 4/44



Review of Ordinary Linear Regression

Suppose you have a continuous response variable (Y) and continuous and/or discrete
explanatory variables (X's).

You want to model the responses as a function of the explanatory variables (covariates). For

example,
Yi = Bo + Bix1; + B2 + €4

where
1. Y; is the response for the " subject

2. B = (Bo, B1,02)" is a (column) vector of constants (or parameters) that describe the
shape of the regression “line” (line, curve, etc)

3. X; = (1,z1;,x2;) is the (row) vector of explanatory variables for the it subject.

4. e; is the random error assumed to be distributed as N (0, o?)

Lecture 11: Introduction to Generalized Linear Models — p. 5/44



In general, you can view the previous regression model as,
Y=FEY)+e

Where

EY) = o+ piz1+ Bz
or in more general terms

— XnXpﬁpxl

Thus, E(Y) is the n x 1 vector of expectations.

Note,
X1 T11,212,---,L1p
¥ — X9 _ T21,T22, ... ,L2p
| Xn ] | mn1,$n2,...,mnp |

is called the design matrix.
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Common Models of this Type

The analysis of continuous data has relied heavily on the linear model presented. These
reflect just a few applications of the linear model.

1. Simple linear regression
2. Multiple regression
3. ANOVA
4. ANCOVA

Lecture 11: Introduction to Generalized Linear Models — p. 7/44



Estimators

The least squares estimator for 3 is

B=(X'X)"1X'Y

The predicted value of Y (denoted as Y) is
Y = X7
Diagnostic of the regression fit can be accomplished with the Hat Matrix
H=XXX)""X'

As we develop our ‘generalized’ approach, you will notice many similarities.

Lecture 11: Introduction to Generalized Linear Models — p. 8/44



Movement towards a GLM

1. For OLS, we are dependent on the distribution of Y being normal.
For categorical data (by definition), the normality assumption is rarely feasible.

3. We may also be interested in other relations of the X 3 with Y. Other mapping
functions that ensure the range of Y remains valid is one of the key justifications.

In terms of a GLM, we have three components related to these limitations.
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Three Components of a GLM

There are 3 components of a generalized linear model (or GLM)
1. Random Component (the outcome)
2. Systematic Component (the design matrix multiplied by the parameter vector)

3. Link function (the function, g(-) that “links” the systematic component to the random
component)

Nelder & Wedderburn (1972) are generally given credit for unifying a broad class (of existing)
models into the GLM definitions.

They showed that provided the random component was part of the ‘Exponential Class’, the
MLEs for all of the models could be obtained using the same algorithm.

Lecture 11: Introduction to Generalized Linear Models — p. 10/44



Random Component

e The random component of a GLM consists of a response variable Y with the
independent observations (y1,y2, ..., Yn).

e Fora GLM, Y needs to have a distribution in the natural exponential family.
e Recall from theory, an exponential class distribution is of the form

f(yi; 0:) = a(0:)b(y: )exply; Q(0:)]

This, in terms of common language, is
® a(6;) is afunction only dependent on the unknown parameter
® b(y;) is a function of the observed sample

® ()(0;) is a function only dependent on the unknown parameter
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Easy Example Exponential Class Variable

Suppose,
Y ~ Poisson(\)
Then,
-
f(y,A) — e y!Ay

_ e—A(ﬁ)eylogA

Here = \, a(0) = a(\) = e, b(y) = 1/y! and Q(7) = log A
Thus,
A Poisson random variable is of the exponential class variable.
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Slightly more complicated example

Suppose,
Y; ~ Bern(m)

where P(Y; =1)=mand P(Y; =0)=1—~

Then,
flyism) = w¥i(l—m)t-vi

Y1
(1—-m)Yi(1—m)—1

= (- m(E)

= (1- W)(l)e(yi log 1)

Here 6 = 7, a(0) = a(r) = (1 —x), b(y) = 1 and Q(7) = log(nw /(1 — ))

Thus, a Bernoulli random variable is a member of the exponential class.
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Exponential Class Variables in General

In general,
e The majority of distributions we will be interested in are exponential class variables

® This includes the more common examples of

1. Normal
2. Poisson
3. Binomial
4. Multinomial

® |t also includes the less common examples of

1. Gamma
2. Negative Binomial
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Examples

1. Dichotomous (binary) with a fixed number of trials
e MI/No Ml
® Success/Failure
e Correct/Incorrect
e Agree/Disagree
These responses have a Bernoulli distribution.

2. Counts (including cells in a contingency table)
® Number of babies born at MUSC daily
e Number of car wrecks per year in Charleston County
These responses have a Poisson distribution.

Lecture 11: Introduction to Generalized Linear Models — p. 15/44



Most Common Distributions

Although, many distributions are members of the Exponential Class,

For the most part, we will focus on the
1. Binomial
2. Poisson

distributions.

However, the approach we will discuss works equally well for all exponential class
distributions.
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Systematic Component

Denote a new vector (11,12, - .., M) Such that

Zjﬁjmij, 1= 1,...,77,
Xip

Ui

e Recall, previously, we let n; be the E(Y).
e However, this results in a linear regression model.

e If we want to minimize this dependency, let

n=f(EY))

where f(-) is a function.
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Link Component

Denote,
E(Y) = pi

Let, g(-) be a monotonic and differentiable function such that
ni = g(pi)
Thus,

g(pi) :Zﬁj%‘j, i=1,...,N
J

In words, we are now modeling a function of the mean (or Expectation) as a combination of
linear predictors.
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Link Function

e The function g(-) is called the “link function” since it links the E(Y;) to the set of
explanatory variables and their estimates.

e For example, if we let g(z) = z (the identify link) and Y is distributed as a Normal R.V.,
then, we are back to the linear model (either simple linear or multiple linear regression)

e For GLM, you generally have the flexibility to choose what ever link you desire.
e However, there is a Special link that we need to consider
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Canonical Link

f(yi; 0:) = a(0;)b(yi)exply; Q(0;)]

If we revisit the density function for an exponential, we see a function Q(6;) that looks
interesting.

Q(0) is defined as the natural parameter of the distribution.

If we let g(-) be defined such that it transforms the mean to the natural parameter, we have
the Canonical link
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Example Canonical Link

Suppose
Y; ~ Bern(m)

where P(Y; =1)=mand P(Y; =0)=1—~

Then we previously showed that

fysm) = (1—m@)e¥ilot =)

with Q(7) = log(w/(1 — 7))

So, if we would let

g(m) =log(m/(1 — 7)) = Zﬁjfﬂj

We would have the canonical link of a Bernoulli/Binomial distribution.
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Recall, the function
g(m) =log(m/(1 —m))

was previously introduced as the ‘log odds’ and was called the logit.

Lets recap what we have just accomplished.

If we let the random component be Bernoulli/Binomial and consider the linking function as
logit, we can model the log odds ratio as a linear function of covariates using

g(m) = Zﬁj%‘
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Since g(m) = log(m/1 — ), we can write the success probability as

T _ X
g = et
T = eXP _ geXP
7T(1—|—€XB) — XPB
XpB
7T - 1—ieX5
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What arethe 3’s and the X’s?

For the logistic model, we have

g(m) =log(m/(1 — 7)) = Zﬁjfﬂj

To answer the question, consider a model in which you have one predictor (i.e., treatment)
and you observe the response MI/No MI.

Let
1 if subjecti received the active treatment
T1; =
b 0 else
and
Xi = [1, 1]
Thus, if subject 7 is on active drug,
X; = [17 1]

and if on placebo
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Then, the odds for a person on placebo would be

T _ ePo+061-0 — Bo
l—m

and for a subject on active drug, the log odds would be

T _ eBo+B1-1 — Bo+0P1
1l —m

Thus, the odds ratio of a success for comparing active treatment to placebo could be written
as

eBo+B1

_ —_ 51
OR = R —e

or that log(OR) = B1.

If you recall, we introduced this notation when we introduced RD, RR and OR.
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Other Choicesinthe Link

An implied advantage of the GLM formulation is that you can specify other links to derive

additional parameter interpretations.

For example, suppose you used the “log” link (log(m) = X 3) instead of the “logit” link.

Now, the log link is not the canonical link, but that is OKAY. Then,

log(m) = Bo + B1714

or
o — eBotBizyy

Therefore, the RR could be viewed as

— +
RR:7T|$—1 _650 P1 _ 4

wlzr=0  ebo

(1 can now be interpreted as log Relative Risk.
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example

Recall our famous MI example.

Myocardial Infarction

Fatal Attack or No
Nonfatal attack | Attack
Placebo 189 10845
Aspirin 104 10933

Previously, we estimated the OR to be

OR = (189 - 10933) /(104 - 10845) = 1.832

which indicates that subjects taking placebo had 1.8 times the odds of having an MI when

compared to subjects taking aspirin.
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Now using a GLM

For this analysis, we want to use the aspirin group as the reference group and estimate.
Therefore in terms of our regression dummy codes, we want

1 if subjectireceived PLACEBO
Tr1; = ) . . .
! 0 if subjectireceived ASPIRIN

with the response coding of

Y; =

1  if subjecti has either a Fatal Ml or a Non Fatal Ml
0 if subjecti does not have an Ml

Lecture 11: Introduction to Generalized Linear Models — p. 28/44



Inputting Data

And we could input this data into SAS as

dat a one;
| nput y x1 count;
car ds;

1 1 189

1 0 104

0O 1 10845

0O 0 10933

run,
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Modeling Fitting Using SAS

And use PROC GENMOD (generalized linear models) to fit the data

proc gennod descendi ng;

freq count;

nodel y = x1 /dist = bin link=logit;
estimate ' X1’ x1 1 /exp;
run;

Notes:

1. We have specified our design matrix to include just X1. GENMOD automatically
includes an intercept unless you tell it not to.

2. We used “dist=bin” to specify the distribution of Y as binomial

3. We used “link = logit” to fit the canonical link (logistic link)

4. The estimate statement invokes a contrast and exponentiates the parameter estimates
Don’t worry, we’ll become very familiar with GENMOD over the next few weeks.
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Selected Results

Response Profile

O dered Tot al
Val ue y Frequency

1 1 293

2 0 21778

PROC GENMOD is nodeling the probability that y="1".

Note: The most important line is the one that indicates what level of the response is
considered a success. In this case, we used “DESCENDING” to specify y=1 as the success.
(by default, SAS takes the first sorted response category as the success)
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Par anet er

| nt er cept
x1

Label

X1
Exp( X1)

DF

1
1

Esti nat e

0. 6054
1.8321

Anal ysis O Paraneter Estinates

St andar d Wal d 95% Confi dence

Esti mat e Error Limts
- 4. 6552 0. 0985 -4. 8483 -4, 4620
0. 6054 0.1228 0. 3647 0. 8462

Contrast Estinate Results

St andar d
Error Al pha Confidence Limts
0.1228 0. 05 0. 3647 0. 8462
0. 2251 0. 05 1. 4400 2. 3308

Therefore our estimate of OR = 1.832 with a 95% CI of (1.44, 2.33).
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Using PROC LOGISTIC

proc logistic descending; freq count; nodel y = x1;
*estimate X1 x1 1 /exp;

run;

THE OUTPUT

Anal ysi s of Maxi mum Li kel i hood Esti nates

St andar d Wl d

Par anet er DF Esti mat e Error Chi - Squar e Pr > Chi Sq
| nt er cept 1 -4, 6551 0. 0985 2232. 4885 <. 0001
x1 1 0. 6054 0.1228 24. 2911 <. 0001

Odds Rati o Esti mat es

Poi nt 95% \Wal d
Ef f ect Esti mat e Confidence Limts
x1 1. 832 1. 440 2. 331

Difference? GENMOD is moment-based, but LOGISTIC uses ML!
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Deviance

For a particular GLM for observations y = (y1,...,yn), let

(s y)
denote the log likelihood function expressed in terms of the means u = (u1, ..., un)
Let

L, y)

denote the maximum of the log likelihood for the model.
If we have n observations and fit a model with n parameters, we have a saturated model.
We then have a ‘perfect fit' of the data (i.e., no degrees of freedom).

Denote the likelihood under the saturated model as

H(y,y)
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Then, the DEVIANCE of a model is

Note:
1. D is distributed as x? with df = N — p
2. pisthe number of parameters estimated under the alternative (or fitted model).

3. Recall, N in the saturated model is the number of parameters included (one for each
observation).

4. Therefore, using the rules for calculating the df of a contingency table we developed
earlier, df equals the difference in parameters estimated under the null (saturated
model) and the alternative (at least one (3 not equal to zero)

For contingency tables D = G2

6. As we proceed, the Deviance will be used to provide a measure of model fit.
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Calculation of Deviance by Hand -Okay, not really

If you recall, we used a Poisson log linear model to calculate the Pearson residuals for a
contingency table.

A saturated model for a contingency table is one that contains an interaction term. For

example;

proc gennod,

nodel count = x1 y x1*y /dist=poi link = |og;
run;
produces a saturated model.
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Proof

The design matrix for this model would be
X =[1,214,Yi, T1:Ys]

Since x1; = y; = (O, 1)

cell (1,1) has X = (1,1,1,1)
cell (1,2) has X = (1,1,0,0)
cell (2,1) has x = (1,0, 1,0)
cell (2,2) has z = (1,0,0,0)

That is, counts for all cells are determined by a combination of X 3.
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GENMOD Results

Criteria For Assessing Goodness O Fit

Criterion

Devi ance

Scal ed Devi ance
Pear son Chi - Squar e
Scal ed Pearson X2
Log Likelihood

DF

O O oo

Val ue

0. 0000
0. 0000
0. 0000
0. 0000

181840. 4662

Val ue/ DF

Note: df = 0 since we are fitting the saturated model (dff = N — N)

I(y,y) = 181840.4662
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Par anet er DF Esti mat e
| nt er cept 1 9. 2995
x1 1 -0. 0081
y 1 - 4. 6552
X1*y 1 0. 6054

Therefore, cell (1,1)’s count would be

log(count cell 1,1)

countcell 1,1

Anal ysis O Paraneter Estinates

St andar d
Error

0. 0096
0. 0136
0. 0985
0.1228

or

— e5.2416

= 189

Wal d 95% Confi dence

Limts
9. 2808 9. 3183
-0. 0346 0. 0185
-4.8483 -4.4620
0. 3647 0. 8462

9.2995 — 0.0081 — 4.6552 4 0.6054
= 5.2416
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The Alternative M odel

proc gennod,
nodel count = x1 y /dist=poi link = 1o0g;
run;

Criteria For Assessing Goodness O Fit

Criterion DF Val ue
Devi ance 1 25. 3720
Scal ed Devi ance 1 25. 3720
Pear son Chi - Squar e 1 25. 0139
Scal ed Pearson X2 1 25.0139

Log Likelihood 181827. 7802
(1, y) = 181827.7802

Val ue/ DF

25. 3720
25. 3720
25. 0139
25. 0139
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Anal ysis O Paraneter Estinates

St andar d Wal d 95% Confi dence
Par anet er DF Esti mat e Error Limts
| nt er cept 1 9. 2956 0. 0096 9.2769 9. 3144
x1 1 -0. 0003 0. 0135 -0. 0267 0. 0261
y 1 -4.3085 0. 0588 -4.4238 -4.1932

Thus, the expected cell count for cell (1,1) would be

log(expected countcell 1,1) = 9.2956 — 0.0003 — 4.3085
—  4.9868
or
count cell 1,1 — 49868
—  146.467

This is the same values as (with some rounding error) 293 % 11034/22071 = 146.48
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Therefore,

D = —2(181827.7802 — 181840.4662)
= 25.37

ondf =4—-—3=1
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Summary of Canonical Links

Distribution  Natural Parameter Canonical Link

Poisson log(\) log
Normal b identity
Binomial log(7/(1 — )) logit

As stated before, just because the natural parameter suggests a certain link, there is no
requirement to model only using the canonical link.
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Recap

Some key summary points:

1. We generalized linear models by allowing for the specification of the distribution of Y
and the relationship of the expectation to the design matrix

2. We do not need normality for the regression model

3. GLMs provide a unified theory of modeling that encompasses most of the important
models for continuous and discrete variables

4. As we will see next, model parameters can be estimated by ML

5. By restricting the distributions to only exponential class distributions, we can use the
same algorithm for ML estimation
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