Lecture 10: Partitioning Chi Squares and Residual Analysis

Dipankar Bandyopadhyay, Ph.D.

BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina

Partitioning Chi-Squares

- We have developed tests of independence
- When a test of independence has a small p-value, what does it say about the strength of the association?
- Not much, the smaller the p-value, the stronger the evidence that AN association exists...i.e., you are more confident that X and Y are NOT independent.
- It does not tell you that the association is very strong.
- If you want to understand more about the association, you essentially have two options using contingency tables: (1) a residual analysis and (2) consider partitioning the Chi-Square statistics.
- We will develop a residual analysis similar to regression models in which we will compare how close the observed values (the O_{ij} 's) are to the expected values (the E_{ij} 's).
- We will also explore partitioning the likelihood ratio test into pieces to examine associations in subtables (i.e., attempt to isolate the strongest trends)

Very General Method

- The easiest method (i.e., is really only a starting point) is to directly compare the O_{ij} to the E_{ij} .
- In SAS, all you need to do is

```
PROC FREQ;
TABLES rowvar*colvar / EXPECTED;
RUN;
```

- Using this very basic comparison, you can identify the general trend of the associations (i.e., "a few more than expected")
- However, without standardization, there is little that can be taken away from the difference other than the trend since the difference is related to the magnitude of the cell counts.

Recall our ever popular MI example.

	Myocardial Infarction			
	Fatal Attack or No			
	Nonfatal attack	Attack		
Placebo	189	10845		
Aspirin	104	10933		

Selected output

Statistic			DF	Value	Prob
Chi-Square	Ratio	Chi-Square	 1 1	25.0139 25.3720	<.0001 <.0001
\A/		-			

We see strong evidence of an association.

Expected Counts Tabulated

TABLE OF T	IRT BY OU OUT	ΓT	
Frequency			
Expected			
Percent			
Row Pct			
Col Pct	HA	NHA	Total
 1 (р)	+ 189	++ 10845	11034
⊥ (F)			TTODE
			40.00
	0.86	49.14	49.99
	1.71	98.29	
	64.51	49.80	
2(A)	+ 104	10933	. 11037
_(11)	146.52	10890	,
		49 54	50 01
			50.01
		99.00	
	35.49	50.20	
	 202	++ 01778	22071
IULAI	293 1 22	21/10 00 67	220/1 100 00
	1.35	90.01	T00.00

Pearson's Residuals

- Pearson's residuals attempts to adjust for the notion that larger values of O_{ij} and E_{ij} tend to have larger differences.
- One approach to adjusting for the variance is to consider dividing the difference $(O_{ij} E_{ij})$ by $E_{ij}^{1/2}$.
- Thus define,

$$e_{ij} = \frac{O_{ij} - E_{ij}}{E_{ij}^{1/2}}$$

as the Pearson residual

• Note that,

$$\sum_{i} \sum_{j} e_{ij}^2 = X^2$$

- Under H_0 , e_{ij} are asymptotically normal with mean 0.
- However, the variance of e_{ij} is less than 1.
- To compensate for this, one can use the STANDARDIZED Pearson Residuals.
- Denote e_{ij}^s as the standardized residuals in which

$$r_{ij} = \frac{O_{ij} - E_{ij}}{(E_{ij}(1 - p_{i.})(1 - p_{.j}))^{1/2}}$$

where $p_{i.} = n_{i.}/N$ is the estimated row *i* marginal probability

• r_{ij} is asymptotically distributed as a standard normal

Utilizing the Information

- As a "rule of thumb", a r_{ij} value greater than 2 or 3 indicates a lack of fit of H_0 in that cell.
- However, as the number of cells increases, the likelihood that a cell has a value of 2 or 3 increases. For example, if you have 20 cells, you could expect 1 in the 20 to have a value greater the 2 just by chance (i.e., $\alpha = 0.05$).
- Calculation of these residuals in not straight forward using PROC FREQ in SAS.
- PROC GENMOD using the RESIDUAL option produces the estimated residuals as Reschi and Stdreschi automatically.
- We'll begin covering GENMOD shortly, for now just consider the SAS code as an example.

SAS Code for Output Delivery System

```
options nocenter;
data one;
 input row col count;
 cards;
 1 1 189
 1 2 10845
 2 1 104
 2 2 10933
;
run;
ods trace on;
ods output crosstabfreqs=tmydata;
proc freq data=one;
weight count;
 table row*col/chisq CELLCHI2 expected;
run;
ods trace off;
```

----- FROM THE SAS LOG ----------- Identifies the table names ------117 options nocenter; 118 data one; 119 input row col count; 120 cards; 125 ; 126 run; 127 ods trace on; 128 ods output crosstabfreqs=tmydata; 129 proc freq data=one; 130 weight count; 131 table row*col/chisq CELLCHI2 expected; 132 run; Output Added: _____ Name: CrossTabFreqs Label: Cross-Tabular Freq Table Data Name: Path: Freq.Table1.CrossTabFreqs _____ Output Added: _____ Name: ChiSq Label: Chi-Square Tests Template: Base.Freq.ChiSq Path: Freq.Table1.ChiSq _____ Output Added: _____ FishersExact Name: Label: Fisher's Exact Test Template: Base.Freq.ChisqExactFactoid Path: Freq.Table1.FishersExact _____ 133 ods trace off;

Using the Table Names

```
data mydata;
set tmydata;
if row ne . and col ne .;
if expected > frequency then sign = -1;
else sign = 1;
pearson_residual = sign * sqrt(CellChiSquare);
residual = frequency - expected;
run;
proc print data=mydata;
var row col CellChiSquare pearson_residual residual;
run;
```

Pearson Residuals

Obs	row	col	Cell Chi Square	pearson_ residual	residual
1	1	1	12.3426	3.51320	42.5199
2	1	2	0.1661	-0.40750	-42.5199
3	2	1	12.3392	-3.51272	-42.5199
4	2	2	0.1660	0.40744	42.5199

Note: we used the variable "sign" to assign the direction of the square root. You could think of the residuals in terms of absolute value.

Total ChiSquare

```
proc sql;
create table totalchisq as select
    sum(cellchisquare) as ChiSq
    from mydata;
proc print data=totalchisq;
run;
----- Output ------
Obs ChiSq
```

1 25.0139

Regular PROC FREQ output

Statistic	DF	Value	Prob
Chi-Square	1	25.0139	<.0001
Likelihood Ratio Chi-Square	1	25.3720	<.0001

```
PROC GENMOD;
CLASS row col;
MODEL count = row col /dist=poi /*assumes cell counts are
the outcome and follow
a Poisson distribution*/
link=log
residuals;/*
```

RUN;

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	1	25.3720	25.3720 <- G^2
Scaled Deviance	1	25.3720	25.3720
Pearson Chi-Square	1	25.0139	25.0139 <- X^2
Scaled Pearson X2	1	25.0139	25.0139
Log Likelihood		181827.7802	

Observation Statistics

Observation	Resraw	Reschi	StReschi
1	42.519853	3.513196	5.0013802
2	-42.51991	-0.4075	-5.001387
3	-42.51997	-3.512728	-5.001394
4	42.519913	0.4074449	5.0013872

Here: Observation is in the order of the data set. To avoid confusion, instead of the option "residual", you can use "obstat".

```
PROC GENMOD data=one;
CLASS row col;
MODEL count = row col /dist=poi /*assumes cell counts are
the outcome and follow
a Poisson distribution*/
link=log
obstats
residuals;
```

RUN;

			Observa	tion Statistics
Observation	count	row col Resraw	Pred Reschi	Std StResdev
1	189	1 1 42.519853	146.48015 3.513196	0.0588072 4.784706
2	10845	1 2 -42.51991	10887.52 -0.4075	0.0095519 -5.004648
3	104	2 1 -42.51997	146.51997 -3.512728	0.058807 -5.278334
4	10933	2 2 42.519913	10890.48 0.4074449	0.0095506 4.998138

Note: I've cleaned up some of the output. Suggestion: Use obstat first to confirm the cells, then use residual to identify just the residuals of interest.

Motivation for this:

- If you reject the H_0 and conclude that X and Y are dependent, the next question could be 'Are there individual comparisons more significant than others?'.
- Partitioning (or breaking a general *I* × *J* contingency table into smaller tables) may show the association is largely dependent on certain categories or groupings of categories.

Recall, these basic principles about Chi Square variables

- If X_1 and X_2 are both (independently) distributed as χ^2 with df = 1 then
- $X = X_1 + X_2 \sim \chi^2 (df = 1 + 1)$
- In general, the sum of independent χ^2 random variables is distributed as $\chi^2(df = \sum df(X_i))$

In order to completely partition a $I \times J$ contingency table, you need to follow this 3 step plan.

- 1. The df for the subtables must sum to the df for the full table
- 2. Each cell count in the full table must be a cell count in one and only one subtable
- 3. Each marginal total of the full table must be a marginal total for one and only one subtable

Example

Independent random samples of 83, 60, 56, and 62 faculty members of a state university system from four system universities were polled to determine which of the three collective bargaining agents (i.e., unions) are preferred.

Interest centers on whether there is evidence to indicate a differences in the distribution of preference across the 4 state universities.

Table 1	Barg	Bargaining agent			
University	101	102	103	Total	
1	42	29	12	83	
2	31	23	6	60	
3	26	28	2	56	
4	8	17	37	62	
Total	107	97	57	261	

The following is selected output from SAS						
Statistic	DF	Value	Prob			
Chi-Square	6	75.1974	<.0001			
Likelihood Ratio Chi-Square	6	71.9911	<.0001			

- Therefore, we see that there is a significant association among University and Bargaining Agent.
- Just by looking at the data, we see that
 - University 4 seems to prefer Agent 103
 - Universities 1 and 2 seem to prefer Agent 101
 - University 3 may be undecided, but leans towards Agent 102
- Partitioning will help examine these trends

The Association of University 4 appears the strongest, so we could consider a subtable of

Subtable 1	Bargaining A		
University	101 and 102	103	Total
1 - 3	179	20	199
4	25	37	62
Total	204	57	261

Note: This table was obtained by considering the $\{4,3\}$ cell in comparison to the rest of the table.

 $G^2 = 60.5440$ on 1 df (p=0.0).

We see strong evidence for an association among universities (grouped accordingly) and agents.

Now, we could consider just Agents 101 and 102 with Universities 1 - 3.

Subtable 2	Barga		
University	101	102	Total
1	42	29	71
2	31	23	54
3	26	28	54
Total	99	80	179

 $G^2 = 1.6378$ on 2 df (p=0.4411).

For Universities 1 -3 and Agents 101 and 102, preference is homogeneous (universities prefer agents in similar proportions from one university to another).

We could also consider Bargaining units by dichotomized university

Subtable 3	Bargaining Agent		
University	101	102	Total
1-3	99	80	179
4	8	17	25
Total	107	97	204

 $G^2 = 4.8441$ on 1 df (p=0.0277).

There is indication that the preference for agents varies with the introduction of University 4.

A final table we can construct is

Subtable 4	Bargaining Agent		
University	101 and 102	103	Total
1	71	12	83
2	54	6	60
3	54	2	56
Total	179	20	199

 $G^2 = 4.966$ on 2 df (p=0.0835).

With the addition of agent 103 back into the summary, we still see that sites 1 - 3 still have homogenous preference.

General Notes:

- 1. We created 4 subtables with df of 1,2,1 and 2 (Recall Rule 1 df must sum to the total. 1+2+1+2=6. Rule 1 - Check!)
- Rule 2 Cell counts in only 1 table. (42 was in subtable 2, 29 subtable 2, ..., 37 subtable 1). Rule 2 Check !
- Rule 3 Marginals can only appear once. (83 was in subtable 4, 60 subtable 4, 56 subtable 4, 62 subtable 1, 107 subtable 3, 97 subtable 3, 57 subtable 1). Rule 3 Check!

Since we have partitioned according to the rules, note the sum of G^2 .

 $G^2 = 60.5440 + 1.6378 + 4.8441 + 4.9660 = 71.9910$ on 6 df which is the same value obtained from the original table.

Now that we have verified our partitioning, we can draw inference on the subtables.

From the partitioning, we can observe

- 1. Preference distribution is homogeneous among Universities 1 3.
- 2. That preference for a bargaining unit is independent of the faculty's university with the exception that if a faculty member belongs to university 4, then he or she is much more likely than would otherwise have been expected to show preference for bargaining agent 103 (and vice versa).

Final Comments on Partitioning

- For the likelihood ratio test (G^2), exact partitioning occurs (meaning you can sum the fully partitioned subtables' G^2 to arrive at the original G^2).
- Pearson's does not have this property
- Use the summation of G^2 to double check your partitioning.
- You can have as many subtables as you have df. However, as in our example, you may have tables with df > 1 (which yields fewer subtables).
- The selection of subtables is not unique. To initiate the process, you can use your residual analysis to identify the most extreme cell and begin there (this is why I isolated the {4,3} cell initially.
- Partitioning is not easy and is an acquired knack. However, the rewards is additional interpretation that is generally desired in the data summary.