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Summary Measures of Association

Sometimes, individual comparisons are of interest.

Such as in our example of comparing the odds of a Fatal MI relative to No MI for the Aspirin
group relative to placebo is valuable.

However, sometimes, a single summary measure is desirable.
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Uncertainty Coefficient-Summary Measure for Nominal

Categories

Theil (1970) proposed the index

U = −

P
i

P
j log(πij/πi·π·j)P

j π·j logπ·j

A value of U = 0 indicates independence of X and Y .

A value of U = 1 indicates that πj|i = 1 for some j at each level of i.

The key limitation of this measure is that values of U are hard to interpret.

For example, if U = .30, is that a small or large association?
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Example of Uncertainty Coefficient

Recall our myocardial infarction example.

We can calculate the joint probabilities as

Probabilities
Myocardial Infarction

Fatal Attack Nonfatal Attack No Attack

Placebo 0.00081555 0.007747723 0.491368764 0.499932038
Aspirin 0.000226542 0.004485524 0.495355897 0.500067962

0.001042091 0.012233247 0.986724661 1

Using the previous definition, it can be shown that U equals

U = −
0.000625012

−0.074212678
= 0.0084
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Calculations in SAS

data uncert;
input i j count @@;
cards;
1 1 18 1 2 171 1 3 10845
2 1 5 2 2 99 2 3 10933

;
run;
proc freq;
tables i*j /measures;
weight count;

run;
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Selected Output

Statistic Value ASE
------------------------------------------------------

Uncertainty Coefficient C|R 0.0084 0.0031 <- our result
Uncertainty Coefficient R|C 0.0009 0.0003
Uncertainty Coefficient Symmetric 0.0016 0.0006

Sample Size = 22071

Interpretation?
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Ordinal Trends

Although the interpretation of U is difficult, when X and Y are both ordinal, there are
additional measures to consider.

Monotone Trends:

1. Monotonically Increasing: As levels of X increase, the levels of the response, Y,
increase

2. Monotonically Decreasing: As levels of X increase, the levels of the response, Y,
decrease

We want to develop a single measure, similar to a correlation, that summarizes these trends.

Definitions:

1. A pair of subjects is Concordant if the subject ranked higher on X and also ranks
higher on Y

2. A pair of subjects is Discordant if the subject ranked higher on X but ranks lower on Y

3. The pair is tied if both rank the same on X and Y

Lecture 8: Summary Measures – p. 7/39



• Denote,
C = Total number of concordant pairs

D = Total number of discordant pairs

• Then, Gamma (Goodman and Kruskal 1954) is defined as

γ =
C − D

C + D

• However, this calculation is a little more involved than first observation.

• Lets explore the calculation for a 2 × 2 table
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Columns (j)
1 2

Rows (i) 1 18 171
2 5 99

• Lets begin by estimating the number of concordant “pairs”

• Recall, a concordant pair must be greater in X and Y or Less in X and Y

• For Cell (1,1), there are 99 observations (the cell 2,2). Note: For the rows, 2>1 and for
the columns 2>1

• Since cell (1,1) has 18 observations, we have 18*99 concordant pairs related to cell
(1,1) (SHOW Peas in a Pod illustration)

• Likewise, for cell (2,2) (note: the only cell in which k<2 and l<2 for some pair (k,l) is cell
(1,1)), there are 18 observations

• Thus, we have 99*18 concordant pairs for Cell (2,2)

• In total, we have 2 × 18 ∗ 99 = 3564 concordant pairs

• Likewise the discordant pairs, D, are 2 × 5 × 171 = 1710 so,

γ =
3564 − 1710

3564 + 1710
= 0.3515

Lecture 8: Summary Measures – p. 9/39



Notes about Gamma

• Gamma treats the variables is symmetrically - you do not need to specify a response

• Gamma ranges from −1 ≤ γ ≤ 1

• When the categories are reversed, the sign of Gamma switches

• |γ| = 1 implies a perfect linear association

• When X and Y are independent, γ = 0. However γ = 0 does not imply independence
(only that the Probability of a concordant pair is the same as the probability of a
discordant pair, i.e. Πc = Πd)

• The general calculation formula for γ is as follows:

γ =
P − Q

P + Q

where . . .
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P =
X

i

X

j

nijAij

where

Aij =
X

k>i

X

l>j

nkl +
X

k<i

X

l<j

nkl

and

Q =
X

i

X

j

nijDij

where

Dij =
X

k>i

X

l<j

nkl +
X

k<i

X

l>j

nkl
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Example

Consider the following data

Cross-Classification of Job Satisfaction by Income
Job Satisfaction

Very Little Moderately Very
Dissatisfied Dissatisfied Satisfied Satisfied

< 15,000 1 3 10 6
15,000 - 25,000 2 3 10 7
25,000 - 40,000 1 6 14 12
> 40,000 0 1 9 11

We want to summarize how job satisfaction and income relate.

We could calculate γ by hand, but I think I’ll opt for SAS
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In SAS - Read in the Data

data test;
input i j count;
cards;
1 1 1
1 2 3
1 3 10
1 4 6
2 1 2
2 2 3
2 3 10
2 4 7
3 1 1
3 2 6
3 3 14
3 4 12
4 1 0
4 2 1
4 3 9
4 4 11
;
run;
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Summarize the Data

proc freq;
tables i*j/measures;
weight count;
run;
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Review Results

Statistics for Table of i by j

Statistic Value ASE
------------------------------------------------------
Gamma 0.2211 0.1172 <--- Our result
Kendall’s Tau-b 0.1524 0.0818
Stuart’s Tau-c 0.1395 0.0753

Somers’ D C|R 0.1417 0.0764
Somers’ D R|C 0.1638 0.0878

Pearson Correlation 0.1772 0.0907
Spearman Correlation 0.1769 0.0955

Lambda Asymmetric C|R 0.0377 0.0828
Lambda Asymmetric R|C 0.0159 0.0273
Lambda Symmetric 0.0259 0.0407

Uncertainty Coefficient C|R 0.0312 0.0197
Uncertainty Coefficient R|C 0.0258 0.0167
Uncertainty Coefficient Symmetric 0.0282 0.0181

Sample Size = 96
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Summary of Gamma

bγ = 0.2211 with SE =0.1172, so an approximately 95% confidence interval can be calculated
as

CI95% = 0.2211 ± 1.96(0.1172) = (−0.0086, 0.4508)

Therefore at the α = 0.05 level, there is insufficient evidence to support the hypothesis that a
linear trend exists in the data.

In other words, there is no evidence to support an association of job satisfaction and income.

Over the next few lectures, we will examine additional ways of summarizing I × J
contingency tables.
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Generalized Table

• Lets suppose that we have an I × J × Z contingency table.

• That is, There are I rows, J columns and Z layers.
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Conditional Independence

We want to explore the concept of conditional independence. But first, lets review some
probability theory.

Recall, two variables A and B are independent if and only if

P (AB) = P (A) × P (B)

Also recall that Bayes Law states for any two random variables

P (A|B) =
P (AB)

P (B)

and thus, when X and Y are independent,

P (A|B) =
P (A)P (B)

P (B)
= P (A)
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Conditional Independence

Definitions:

In layer k where k ∈ {1, 2, . . . , Z}, X and Y are conditionally independent at level k of Z

when
P (Y = j|X = i, Z = k) = P (Y = j|Z = k), ∀i, j

If X and Y are conditionally independent at ALL levels of Z, then X and Y are
CONDITIONALLY INDEPENDENT.
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Application of the Multinomial

Suppose that a single multinomial applies to the entire three-way table with cell probabilities
equal to

πijk = P (X = i, Y = j, Z = k)

Let

π·jk =
P
X

P (X = i, Y = j, Z = k)

= P (Y = j, Z = k)

Then,
πijk = P (X = i, Z = k)P (Y = j|X = i, Z = k)

by application of Bayes law. (The event (Y = j) = A and (X = i, Z = k) = B).
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Then if X and Y are conditionally independent at level z of Z,

πijk = P (X = i, Z = k)P (Y = j|X = i, Z = k)

= πi·kP (Y = j|Z = k)

= πi·kP (Y = j, Z = k)/P (Z = k)

= πi·kπ·jk/π··k

for all i, j, and k.
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Example

Suppose we look at the response (success, failure) (Y ) for Treatments (A,B) (X) for a given
center (1,2) (Z). There is a total sample size of n = 100

Response
Clinic Treatment Success Failure

1 A 18 12
B 12 8

2 A 2 8
B 8 32

Total A 20 20
B 20 40

Recall the MLE for any parameter of the multinomial is nijk/n.
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We want to examine whether or not the Response is independent of Treatment for each
clinic.

Let π111 be the response probability for a Success of Treatment A at Clinic 1.
Then,

π111 = 18/100 = .18

Using the definition of conditional independence, X and Y are conditionally independent if
and only if

πijk = πi·kπ·jk/π··k, ∀i, j, k

Then,
π1·1 = (18 + 12)/100 = .30

π·11 = (18 + 12)/100 = .30

π··1 = (18 + 12 + 12 + 8)/100 = .50
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Thus,

π1·1π·11/π··1 = (.3)(.3)/.5

= 9/50

= .18

So for {X = 1, Y = 1, Z = 1} X and Y are conditionally independent.

We need to verify the conditional independence holds for other combinations of i, j, k.
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For (212) (i.e., A success for treatment B at Site 2)

π212 = 8/100 = .08

π2·2 = (8 + 32)/100 = .40

π·12 = (2 + 8)/100 = .10

π··2 = (2 + 8 + 8 + 32)/100 = .50

Thus,

π2·2π·12/π··2 = (.4)(.1)/.5

= 4/50

= .08

There are other combinations to verify; however, we will stop here and say that X and Y are
conditionally independent given Z
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Conditional Independence and Marginal Independence

We have just shown that the treatment and response are conditionally independent given a
clinic.

Does this imply that treatment and response are independent in general?

That is, does
πij· = πi··π·j· ?

According to the definition of conditional independence,

πijk = πi·kπ·jk/π··k, ∀i, j, k

and since πij· =
P

k πijk,

X

k

πijk =
X

k

πi·kπ·jk/π··k
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Since the three probabilities on the right hand side of the equation all involve k, no
simplification can be made.
Thus, X

k

πijk 6= πi··π·j·

That is, CONDITIONAL INDEPENDENCE does not imply MARGINAL INDEPENDENCE.
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We were interested in Conditional Associations.

• For a partial table z ∈ Z, the association of ORXY (z) is called a Conditional Odds
Ratio

• X and Y are conditionally independent if ORXY (z) = 1 ∀z ∈ Z

From our example

ORSite 1 =
18 × 8

12 × 12
= 1

and

ORSite 2 =
2 × 32

8 × 8
= 1
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The marginal association of X and Y is

OR =
20 × 40

20 × 20
= 2

Therefore, since OR(1) = OR(2) = 1, X and Y are conditionally independent given Z (or
center) where as X and Y are NOT INDEPENDENT.

Also, this example illustrates a homogeneous XY association since

OR(1) = OR(2)

Also note, it is much easier to use the fact that OR = 1 instead of the probability statements
to show independence, but how do you prove this?
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Proof:
Let OR(k) = π11kπ22k/π12kπ21k be the Odds Ratio for the kth partial table.

If X and Y are conditionally independent at level k of Z then,

OR(k) = π11kπ22k/π12kπ21k

=

“

π
1·kπ

·1k

π
··k

”“

π
2·kπ

·2k

π
··k

”

“

π
1·kπ

·2k

π
··k

”“

π
2·kπ

·1k

π
··k

”

= 1
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Extensions to more than 2 dimensions

Suppose we want to study the effect of X on Y .

• For valid comparisons, we should control for factors that may be related to both X and
Y .

• Those factors that are related to both are called confounding variables.

• Example
Suppose we are interested in exploring the relationship of the death verdict on racial
factors. The data we have available summarizes death penalty by the victim’s race and
the defendant’s race.

Victims Defendants Death Penalty Percent
Race Race Yes No Yes

White White 53 414 11.3
Black 11 37 22.9

Black White 0 16 0.0
Black 4 139 2.8

Total White 53 430 11.0
Black 15 176 7.9
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Partial Tables

To control for a confounding variable Z, we need to look at the association of X on Y at a
level of Z, Z = 1, . . . , z.

• The z subtables are called partial tables

• Summing over Z (i.e., ignoring the effects of Z) results in a MARGINAL table.

In our example, we are going to control for the VICTIM’S RACE.
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Conditional Associations

• For a partial table z ∈ Z, the association of X on Y is called a Conditional association

• Let ORXY (z) be defined as the Odds Ratio for partial table z ∈ Z.

• A table has homogeneous XY association when

ORXY (1) = ORXY (2) = · · · = ORXY (Z)

• However, if some of these associations are not equal, then the factor Z is described as
an effect modifier.

• Think of an effect modifier as an interaction term - The conditional association of X on
Y is dependent on the value of Z.
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Example

Recall from the previous example,

We wish to study the effects of racial characteristics on whether persons convicted of
homicide received the death penalty. Initially, lets looks at the 674 subjects classified by the
Defendant’s Race and Death Penalty

Death Penalty
1 2

Defendant’s Race 1 53 430 483
2 15 176 191

68 606 674

Note that this table has been “collapsed” over victim’s race.

The observed association (as measured by OR) of the defendant’s race and death penalty is

OR =
53 · 176

15 · 430
= 1.45
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White Victim’s

If we evaluated only White Victim’s, we would observe

Death Penalty
1 2

Defendant’s Race 1 53 414 467
2 11 37 48

64 451 515

The observed OR of the defendant’s race and death penalty for WHITE VICTIMS is

OR(white victims) =
53 · 37

11 · 414
= 0.4306
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black Victim’s

If we evaluated only Black Victim’s, we would observe

Death Penalty
1 2

Defendant’s Race 1 0 16 16
2 4 139 143

4 155 159

The observed OR of the defendant’s race and death penalty for BLACK VICTIMS is

OR(black victims) =
0 · 139

4 · 16
= 0

Or in terms of the empirical logit

ORE
(black victims) =

(0 + 0.5) · (139 + 0.5)

(4 + 0.5) · (16 + 0.5)
= 0.939
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Simpson’s Paradox

• Sometimes the marginal association is in the opposite direction from the conditional
associations.

• This is Simpson’s Paradox

• Our example illustrates the paradox

• Simpson’s Paradox is often one of the arguments when investigators try to draw causal
effects from associations of X with Y.

• Another case of Simpson’s paradox is when there is a change in the magnitude of
association

• Consider the following example
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Example

Aortic Smoker
Gender Stenosis Yes No Total

Males Yes 37 25 62
No 24 20 44

Females Yes 14 29 43
No 19 47 66

Combined Yes 51 54 105
No 43 67 110

• We want to study the association of smoking on aortic stenosis (narrowing of the aorta)

• We have stratified our sample based on gender (Males have higher risk of
cardiovascular disease)

• We can use SAS to assist in the calculations
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options nocenter;
data one;
input gender aortic smoker count;
cards;

1 1 1 37
1 1 2 25
1 2 1 24
1 2 2 20
2 1 1 14
2 1 2 29
2 2 1 19
2 2 2 47
;
run;
title "Partial Table: Males";
proc freq data=one;
where gender = 1;
tables aortic * smoker /chisq;
weight count;

run;
title "Partial Table: Females";
proc freq data=one;
where gender = 2;
tables aortic * smoker /chisq;
weight count;

run;
title "Marginal Table: Gender combined";

38-1



proc freq data=one;
tables aortic * smoker /chisq;
weight count;

run;

38-2



Selected Results

Statistics for Table of aortic by smoker for MALES *****

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 0.2774 0.5984

Statistics for Table of aortic by smoker for FEMALES *****

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 0.1753 0.6754

Statistics for Table of aortic by smoker COMBINED *****

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 1.9623 0.1613

Although the combined table isn’t statistically significant, there is a change in the evidence
for an association. This too is Simpson’s paradox.
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