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Testing Independence

• Previously, we looked at RR = OR = 1 to determine independence.

• Now, lets revisit the Pearson and Likelihood Ratio Chi-Squared tests.

• Pearson’s Chi-Square

X2 =
2
X

i=1

2
X

j=1

(Oij − Eij)
2

Eij

• Likelihood Ratio Test

G2 =
2
X

i=1

2
X

j=1

Oij log(
Oij

Eij

)

• Since both X2 and G2 are distributed as approximately χ2, in order to draw inference
about the significance of both, we need the degrees of freedom.
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Degrees of Freedom

• A way to think about degrees of freedom is to relate it to the number of “pieces” of
information you need to complete a table.

• More specifically, Degrees of Freedom (df ) equals

df = Number of cells - Number of Constraints - Number of Parameters Estimated

• First, lets consider Pearson’s Chi-Square

• We will derive df for the Cross Sectional Design using this definition.
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• For the general I × J contingency table, there are a total of IJ cells.

• Under the Multinomial sampling design, the only constraint is that
P

pij = 1 so there
is only one constraint.

• Under the hypothesis on interest, we are interested in estimating the marginal
probabilities.

• Since the sample size is fixed, we only need to estimate I − 1 marginal row
probabilities.

• Namely p1·, p2·, . . . , p(I−1)·

• Likewise, we only need to estimate J − 1 column marginals.

• Thus,

df = IJ − Number of Constraints - Number of Parameters Estimated
df = IJ − 1 − ((I − 1) + (J − 1)) = IJ − I − J + 1 = (I − 1)(J − 1)
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Degrees of Freedom for the Product binomial Sampling

• Again, there are IJ cells in our I × J contingency table

• For the Prospective design, we have constraints that each rows probability sums to 1,
so there are I constraints.

• Although we did not state it directly before, the hypothesis of interest is the
“Homogeneity” hypothesis. That is, that H0 = pij = p·j for j = 1, 2, . . . J . Therefore,
there are J − 1 estimated marginal probabilities.

• Then the DF equals,

df = IJ − I − (J − 1) = IJ − I − J + 1 = (I − 1)(J − 1)
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In summary for Pearson’s Chi-Square

• For the remaining study design (Case-Control), the degrees of freedom can be shown
to be (I − 1)(J − 1).

• Therefore, regardless of the sample design, the df for any I × J contingency table
using Pearson’s Chi-Square is (I − 1)(J − 1).

• For the 2 × 2 tables we have been studying,

df = (2 − 1) × (2 − 1) = 1
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Likelihood Ratio Test

• If you recall, we described the df for the likelihood ratio test as the difference in the
number of parameters estimated under the alternative minus the number estimated
under the null.

• Under the multinomial sampling design, the alternative model is that pij 6= pi·p·j and
as such,

P

i

P

j pij = 1. Thus, there is only one constraint and we estimate IJ − 1

cell probabilities.

• Under the null, we have pij = pi·p·j which is determined by (I − 1) and (J − 1)

marginals. Thus, we only estimate [(I − 1) + (J − 1)] marginal probabilities.

• Thus, the DF of G2 is

df = IJ − 1 − [(I − 1) + (J − 1)] = (I − 1)(J − 1)

.
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Comparison ofX2 andG
2

• Pearson and the LRT have same limiting distribution. (both converge in distribution to
χ2 with df = (I − 1)(J − 1) as n → ∞)

• Pearson’s is score based

• LRT combines the information of the null and alternative hypotheses

• So which one is best?
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ChoosingX2 or G
2

• X2 converges in distribution faster than G2.

• When n/IJ < 5 (less than 5 per cell), G2 usually is not a good estimate.

• When I or J is large, Pearson’s usually is valid when some Eij < 5 but most are
greater than 5.

• Therefore, for the general I × J table, you can usually just use Pearson’s Chi Square.

• We will now develop a test for small samples.
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Small Samples

Question: Is there Gender Bias in Jury Selection?
SELECTED
FOR JURY

|YES |NO | Total
G ---------+--------+--------+
E | | |
N FEMALE | 1 | 9 | 10
D | | |
E ---------+--------+--------+
R | | |

MALE | 11 | 9 | 20
| | |

---------+--------+--------+
Total 12 18 30

The sampling distribution for this study design is hypergeometric.

However, we will adapt the study design into a small sample exact test.
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• In this study, we COULD consider the column totals fixed by design (since the jury has
to have 12 members), and the row totals random.

• Then, the columns are independent binomials.

• Using SAS

data one;
input sex $ jury $ count;
cards;
1FEMALE 1YES 1
1FEMALE 2NO 9
2MALE 1YES 11
2MALE 2NO 9
;

proc freq;
table sex*jury/expected chisq;
weight count;
run;
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TABLE OF SEX BY JURY
SEX JURY

Frequency|
Expected |
Percent |
Row Pct |
Col Pct |1YES |2NO | Total
---------+--------+--------+
1FEMALE | 1 | 9 | 10

| 4 | 6 |
| 3.33 | 30.00 | 33.33
| 10.00 | 90.00 |
| 8.33 | 50.00 |

---------+--------+--------+
2MALE | 11 | 9 | 20

| 8 | 12 |
| 36.67 | 30.00 | 66.67
| 55.00 | 45.00 |
| 91.67 | 50.00 |

---------+--------+--------+
Total 12 18 30

40.00 60.00 100.00
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STATISTICS FOR TABLE OF SEX BY JURY

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 5.6250 0.0177
Likelihood Ratio Chi-Square 1 6.3535 0.0117
Continuity Adj. Chi-Square 1 3.9063 0.0481
Mantel-Haenszel Chi-Square 1 5.4375 0.0197
Phi Coefficient -0.4330
Contingency Coefficient 0.3974
Cramer’s V -0.4330

WARNING: 25% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.
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• A rule of thumb in SAS is that the Large Sample approximations for the likelihood ratio
and Pearson’s Chi-Square are not very good if the sample size is small

WARNING: 25% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

• Suppose for a cross sectional, prospective, or case-control design:
some of the cell counts are small (so that Eij < 5), and you want to make inferences
about the OR.

• A popular technique with small samples is to fix both margins of the (2 × 2) table, and
use ‘Exact Tests’ and confidence intervals.
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Exact Tests - For the2 × 2 table

Suppose, then, for:

1. A prospective study (rows margins fixed) we further condition on the column margins

2. A case-control study (column margins fixed) we further condition on the rows margins

3. A cross sectional (total fixed) we condition on both row and column margins.

4. In all cases, we have a conditional distribution with row and column margins fixed.
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Question

• What is the conditional distribution of Y11 given both row and column margins are fixed.

• First note, unlike the other distributions discussed, since the margins are fixed and
known, we will show that this conditional distribution is a function of only one unknown
parameter

• This follows from what we have seen:

• If the total sample size is fixed (cross sectional), we have 3 unknown parameters,
(p11, p12, p21)

• If one of the margins is fixed (prospective, or case-control study), we have two
unknown parameters, (p1, p2) or (π1, π2)

• Intuitively, given we know both margins, if we know one cell count (say Y11), then we
can figure out the other 3 cell counts by subtraction. This implies that we can
characterize the conditional distribution by 1 parameter.

• Thus, given the margins are fixed, we only need to consider one cell count as random,
and, by convention Y11 is usually chosen. (you could have chosen any of the 4 cell
counts, though).
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Can you complete all of the observed cell counts given the information available? Yes.

Column
1 2

Row 1 Y11 Y1·

2 Y2·

Y·1 Y·2 N = n··
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• Question: Then, what is the conditional distribution of Y11 given both row and column
margins are fixed.

P [Y11 = y11|y1·, y·1, y··, OR]

• After some tedious algebra, you can show it is non-central hypergeometric, i.e.,

P [Y11 = y11|y1·, y·1, y··, OR] =

0

@

y·1

y11

1

A

0

@

y·· − y·1

y1· − y11

1

A(OR)y11

Py
·1

ℓ=0

0

@

y·1

ℓ

1

A

0

@

y·· − y·1

y1· − ℓ

1

A(OR)ℓ

where, for all designs,

OR =
O11O22

O21O12
,

• We denote the distribution of Y11 by

(Y11|y1·, y·1, y··) ∼ HG(y··, y·1, y1·, OR)
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Notes about non-central hypergeometric

• Again, unlike the other distributions discussed, since the margins are fixed and known,
the non-central hypergeometric is a function of only one unknown parameter, the OR.

• Thus, the conditional distribution given both margins is called non-central
hypergeometric.

• Given both margins are fixed, if you know one of the 4 cells of the table, then you know
all 4 cells (only one of the 4 counts in the table is non-redundant).

• Under the null H0: OR=1, the non-central hypergeometric is called the central
hypergeometric or just the hypergeometric.

• We will use the hypergeometric distribution (i.e., the non-central hypergeometric under
H0: OR=1) to obtain an ‘Exact’ Test for H0: OR=1. This test is appropriate in small
samples.
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Fisher’s Exact Test

Let’s consider the following table with both Row and Column totals fixed.

Column
1 2

Row 1 Y11 Y12 Y1·

2 Y21 Y22 Y2·

Y·1 Y·2 N = Y··

Many define the {1, 1} cell as the “Pivot Cell”.

Before we consider the sampling distribution, lets consider the constraints on the Pivot Cell.
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The ValuesL1 andL2

• We know that Y11 must not exceed the marginal totals, Y·1 or Y1·

• That is,

Y11 ≤ Y·1 and Y11 ≤ Y1·

• Therefore, the largest value Y11 can assume can be denoted as L2 in which

L2 = min(Y·1, Y1·)

• Similarly, the minimum value of Y11 is also constrained.

• It is harder to visualize, but the minimum value Y11 can assume, denoted as L1, is

L1 = max(0, Y1· + Y·1 − Y··)
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Example

Suppose you observe the following marginal distribution.

Column
1 2

Row 1 y11 6
2 3

5 4 9

• We want to determine L1 and L2

• So that we can determine the values the Pivot Cell can assume.

• The values in which the Pivot Cell can assume are used in the significance testing.
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Based on the previous slide’s table, L1 and L2 are

L1 = max(0, Y1· + Y·1 − Y··)

= max(0, 6 + 5 − 9)

= max(0, 2)

= 2

and

L2 = min(Y1·, Y·1)

= min(6, 5)

= 5

Therefore, the values that Y11 can assume are {2, 3, 4, 5}.
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All Possible Contingency Tables

• Since each table is uniquely defined by the pivot cell, the following tables are all of the
possible configurations.

ORE = 0.078 Column
1 2

Row 1 2 4 6
2 3 0 3

5 4 9

OR = 0.5 Column
1 2

Row 1 3 3 6
2 2 1 3

5 4 9

OR = 4 Column
1 2

Row 1 4 2 6
2 1 2 3

5 4 9

ORE = 25.7 *** Column
1 2

Row 1 5 1 6
2 0 3 3

5 4 9

• Suppose the table observed is flagged with “***”. When freq = 0, we use 0.5.

• How do we know if the Rows and Columns are independent?

• Note, as Y11 increases, so does the OR.
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Test Statistics

• The probability of observing any given table is

P [Y11 = y11|Y1·, Y2·, Y·1, Y·2] =

0

@

y·1

y11

1

A

0

@

y·2

y12

1

A

0

@

y··

y1·

1

A

• The probability of observing our table is

P [Y11 = 5|6, 3, 5, 4] =

0

@

5

5

1

A

0

@

4

1

1

A

0

@

9

6

1

A

= 4
84

= 0.0476

• We now need to develop tests to determine whether or not this arrangement supports
or rejects independence.
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One-sided Tests

• Suppose we want to test

HO :OR = 1 or E(Y11) = y1·y·1/y··

versus

HA:OR > 1 or E(Y11) > y1·y·1/y··

• Let y11,obs be the observed value of Y11; we will reject the null in favor of the
alternative if y11,obs is large (recall from the example, as Y11 increases, so does the
OR).

• Then, the exact p−value (one-sided) is the sum of the table probabilities in which the
pivot cell is greater than or equal to the Y11,obs.
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• Or more specifically, The exact p−value looks at the upper tail:

p − value = P [Y11 ≥ y11,obs|HO :OR = 1]

=
PL2=min(y

·1,y1·)
ℓ=y11,obs

0

@

y·1

ℓ

1

A

0

@

y·2

y1· − ℓ

1

A

0

@

y··

y1·

1

A

• Note that ℓ increments the values of Y11 to produce the tables as extreme (ℓ = Y11,obs

and more extreme (approaching L2)

• Note y1· = y11 + y12 so y12 = y1· − y11.

Lecture 7: Testing Independence – p. 27/56



• Suppose we want to test

HO :OR = 1 or E(Y11) = y1·y·1/y··

versus

HA:OR < 1 or E(Y11) < y1·y·1/y··

• We will reject the null in favor of the alternative if y11,obs is small.

• Then, the exact p−value looks at the lower tail:

p − value = P [Y11 ≤ y11,obs|HO :OR = 1]

=
Py11,obs

ℓ=L1=max(0,y1·+y
·1−y

··
)

0

@

y·1

ℓ

1

A

0

@

y·2

y1· − ℓ

1

A

0

@

y··

y1·

1

A
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Fisher’s Exact Test - Two-sided Test

• Suppose we want to test

HO :OR = 1 or E(Y11) = y1·y·1/y··

versus

HA:OR 6= 1 or E(Y11) 6= y1·y·1/y··

• The exact p−value here is the exact 2-sided p-value is

P

2

6

4

seeing a result as likely or
less likely than the observed
result in either direction

˛

˛

˛

˛

˛

˛

H0 : OR = 1

3

7

5
.
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In general, to calculate the 2-sided p−value,

1. Calculate the probability of the observed result under the null

π = P [Y11 = y11,obs|HO :OR = 1]

=

0

@

y·1

y11,obs

1

A

0

@

y·· − y·1

y1· − y11,obs

1

A

0

@

y··

y1·

1

A
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2. Recall, Y11 can take on the values

max(0, y1· + y·1 − y··) ≤ Y11 ≤ min(y1·, y·1),

Calculate the probabilities of all of these values,

πℓ = P [Y11 = ℓ|HO :OR = 1]

3. Sum the probabilities πℓ in (2.) that are less than or equal to the observed probability π in
1.

p − value =

min(y1·,y·1)
X

ℓ=max(0,y1·+y
·1−y

··
)

πℓI(πℓ ≤ π)

where

I(πℓ ≤ π) =

(

1 if πℓ ≤ π

0 if πℓ > π
.
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Using our example “By Hand”

Recall, P (Y11,obs = 5) = 0.0476. Below are the calculations of the other three tables.

P [Y11 = 2|6, 3, 5, 4] =

0

@

5

2

1

A

0

@

4

4

1

A

0

@

9

6

1

A

= 10
84

= 0.1190

P [Y11 = 3|6, 3, 5, 4] =

0

@

5

3

1

A

0

@

4

3

1

A

0

@

9

6

1

A

= 40
84

= 0.4762
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P [Y11 = 4|6, 3, 5, 4] =

0

@

5

4

1

A

0

@

4

2

1

A

0

@

9

6

1

A

= 30
84

= 0.3571

• Then, for HA:OR < 1,
p−value = 0.1190 + 0.4762 + 0.3571 + 0.0476 = 1.0

• for HA:OR > 1,
p−value = 0.0476

• For HA:OR 6= 1,
p−value = 0.0476 (we observed the most extreme arrangement)
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Using SAS

data test;
input row $ col$ count;

cards;
1row 1col 5
1row 2col 1
2row 1col 0
2row 2col 3
;
run;
proc freq;
tables row*col/exact;
weight count;

run;
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Frequency|
Percent |
Row Pct |
Col Pct |1col |2col | Total
-----------------------------------
1row | 5 | 1 | 6

| 55.56 | 11.11 | 66.67
| 83.33 | 16.67 |
| 100.00 | 25.00 |

----------------------------
2row | 0 | 3 | 3

| 0.00 | 33.33 | 33.33
| 0.00 | 100.00 |
| 0.00 | 75.00 |

---------|------------------
Total 5 4 9

55.56 44.44 100.00
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Statistics for Table of row by col

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 5.6250 0.0177
Likelihood Ratio Chi-Square 1 6.9586 0.0083
Continuity Adj. Chi-Square 1 2.7563 0.0969
Mantel-Haenszel Chi-Square 1 5.0000 0.0253
Phi Coefficient 0.7906
Contingency Coefficient 0.6202
Cramer’s V 0.7906

WARNING: 100% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.
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Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 5
Left-sided Pr <= F 1.0000
Right-sided Pr >= F 0.0476

Table Probability (P) 0.0476
Two-sided Pr <= P 0.0476

Sample Size = 9
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General Notes about Fisher’s Exact Test

• Fisher’s Exact p−values is one of the most frequently used p−values you will find in
the medical literature (for “good studies”)

• However, Cruess (1989) reviewed 201 scientific articles published during 1988 in The
American Journal of Tropical Medicine and Hygiene and found 148 articles with at
least one statistical error. The most common error was found to be the use of a large
sample χ2 p−value when the sample was too small for the approximation.

• Since the values of Y11 is discrete (highly discrete given a small sample size such as
in our example), the actual number of possible p−values is limited.

• For example, Given our example margins, {0.0476, 0.1666, 0.5237, 1.0} are our only
potential values.
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• The hypergeometric (when OR = 1) is symmetrically defined in the rows and columns.

Variable (Y )

1 2

1
Variable (X)

2

Y11 Y12 Y1·

Y21 Y22 Y2·

Y·1 Y·2 Y··
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In particular, under H0 : OR = 1

P [Y11 = y11|OR = 1] =

0

@

y·1

y11

1

A

0

@

y·2

y21

1

A

0

@

y··

y1·

1
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=
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Expected Value ofY11 under the null

• Recall, for the hypergeometric distribution, the margins Yi·, Y·j and Y·· are assumed
known and fixed.

• From the theory of the hypergeometric distribution, under the null of no association,
the mean is

E(Yij |OR = 1) =
yi·y·j

y··

• For other distributions, we could not write the expected value in terms of the possibly
random Yi· and/or Y·j . Since (Yi·, Y·j , Y··) are known for the hypergeometric, we can
write the expected value in terms of them.

Lecture 7: Testing Independence – p. 41/56



• Thus, the null H0:OR = 1 can be rewritten as

H0:E(Yij |OR = 1) =
yi·y·j

y··
,

• Under no association,

Eij =
[ith row total (yi·)] · [jth column total (y·j)]

[total sample size (y··) ]
,

is the estimate of E(Yij) under the null of no association

• However, under independence, Eij is the exact conditional mean (not an estimate)
since yi· and y·j are both fixed.
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Miscellaneous notes regardingX2 Test

• Suppose we have the following
p1 = .4

• and
p2 = .6

• where p1 and p2 are the true success rates for a prospective study.

• Thus, the true odds ratio is

OR =
.40 · .80

.20 · .60
= 2

2

3
= 2.666
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Potential Samples

• Suppose we randomized 50 subjects (25 in each group) and observe the following
table

Success Failure Total

Group 1 10 15 25
Group 2 5 20 25

Total 15 35 50

• And use SAS to test p1 = p2
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options nocenter;
data one;
input row col count;
cards;
1 1 10
1 2 15
2 1 5
2 2 20
;
run;
proc freq data=one;
tables row*col/chisq measures;
weight count;

run;
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Selected Results

The FREQ Procedure

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 10
Left-sided Pr <= F 0.9689
Right-sided Pr >= F 0.1083

Table Probability (P) 0.0772
Two-sided Pr <= P 0.2165

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
-----------------------------------------------------------------
Case-Control (Odds Ratio) 2.6667 0.7525 9.4497
Cohort (Col1 Risk) 2.0000 0.7976 5.0151
Cohort (Col2 Risk) 0.7500 0.5153 1.0916

Sample Size = 50
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Example Continued

• For this trial, we would fail to reject the null hypothesis (p=0.2165).

• However, our estimated odds ratio is 2.6666 and relative risk is 2.0

• What would happen if our sample size was larger?

Lecture 7: Testing Independence – p. 46/56



data two;
input row col count;
cards;

1 1 40
1 2 60
2 1 20
2 2 80
;
run;
proc freq data=two;
tables row*col/chisq measures;
weight count;

run;
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Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 40
Left-sided Pr <= F 0.9995
Right-sided Pr >= F 0.0016

Table Probability (P) 0.0010
Two-sided Pr <= P 0.0032

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
-----------------------------------------------------------------
Case-Control (Odds Ratio) 2.6667 1.4166 5.0199
Cohort (Col1 Risk) 2.0000 1.2630 3.1670
Cohort (Col2 Risk) 0.7500 0.6217 0.9048

Sample Size = 200
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Moral of the Story?

• Both examples have the exact same underlying probability distribution

• Both examples have the exact same estimates for OR and RR

• The statistical significance differed

• A Chi-square (or as presented Fisher’s exact)’s p−value does not indicate how strong
an association is in the data (i.e., a smaller p-value, say < 0.001, does not mean there
is a "strong" treatment effect)

• It simply indicates that you have evidence for the alternative (i.e., p1 6= p2).

• You must use a measure of association to quantify this difference
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Generalized Odds Ratio

• For the 2 × 2 table, a single measure can summarize the association.

• The association could be the Odds Ratio or Relative Risk

• For the general I × J case, a single measure cannot summarize the association
without loss of information.

• However, a set of odds ratios or another summary index (such as a correlation
measure) can summarize the association

Note: “Loss of information” can be obtained by collapsing the categories into a 2 × 2
structure.
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Example we will use

Agresti Table 2.1 - Page 37

Myocardial Infarction
Fatal Attack Nonfatal Attack No Attack

Placebo 18 171 10845
Aspirin 5 99 10933

We want to estimate the association of Aspirin Use on MI.
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Collapsed Categories

We could collapse the Fatal Attack and Nonfatal Attack categories together to obtain

Myocardial Infarction
Fatal Attack or No
Nonfatal attack Attack

Placebo 189 10845

Aspirin 104 10933

Then, the OR of having a MI is

ORMI = 189∗10933
104∗10933

= 1.83

Thus, the odds of a MI are 1.83 times higher when taking placebo when compared to aspirin.
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Generalized Odds Ratio

• There are

 

I

2

!

pairs of rows

• and

 

J

2

!

pairs of columns

• that can produce

 

I

2

! 

J

2

!

estimates of the odds ratio

• We are going to consider three cases for the generalized odds ratio
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Case 1

For rows a and b and columns c and d, the odds ratio (πacπbd/πbcπad) is the most loosely
defined set of generalizes ORs.

There are

 

I

2

! 

J

2

!

of this type.

For our example, lets compare Fatal MI to No MI.

ORfatal vs. No MI =
18 ∗ 10933

5 ∗ 10845
= 3.63

That is, the odds of a having a fatal MI vs No MI are 3.63 times higher for the Placebo group
when compared to the group taking Aspirin.
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Case 2: Local ORs

The local ORs are obtained by comparing adjacent rows and columns.

That is,

ORij =
πijπi+1,j+1

πi+1,jπi,j+1

For our example, we could obtain 2 local ORs

1. Fatal MI vs. Non Fatal MI (OR = (18 · 99)/(5 · 171) = 2.08)

2. Non Fatal MI vs. No MI (OR = (171 · 10933)/(99 · 10845) = 1.74)

Note: There are (I − 1)(J − 1) local odds ratio.
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Case 3: Last Column (Reference) OR

For the I × J table with I representing the last row and J representing the last column, then

αij =
πijπIJ

πIjπiJ

, i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1

represents the OR obtained by referencing the last row and last column. For our example,

1. α11 = (18 ∗ 10933)/(5 ∗ 10933) = 3.62

2. α12 = (171 ∗ 10933)/(99 ∗ 10845) = 1.74
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Summary of Generalized Methods

• The set of (I − 1)(J − 1) ORs contain much redundant information

• As illustrated, many of the approaches provide the same result

• When interpreting the ORs, be mindful of the reference category and state it in the
summary

• Independence is equivalent to all (I − 1)(J − 1) ORs = 1
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