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Testing Independence

® Previously, we looked at RR = OR = 1 to determine independence.
® Now, lets revisit the Pearson and Likelihood Ratio Chi-Squared tests.
® Pearson’s Chi-Square
2 2
Eij)*?

xr=y oy G

i=1j=1 i

e Likelihood Ratio Test
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e Since both X2 and G? are distributed as approximately x2, in order to draw inference
about the significance of both, we need the degrees of freedom.
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Degrees of Freedom

® A way to think about degrees of freedom is to relate it to the number of “pieces” of
information you need to complete a table.

® More specifically, Degrees of Freedom (df) equals

df = Number of cells - Number of Constraints - Number of Parameters Estimated

® First, lets consider Pearson’s Chi-Square

e \We will derive df for the Cross Sectional Design using this definition.
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For the general I x J contingency table, there are a total of I.J cells.

Under the Multinomial sampling design, the only constraint is that > | p;; = 1 so there
IS only one constraint.

Under the hypothesis on interest, we are interested in estimating the marginal
probabilities.

® Since the sample size is fixed, we only need to estimate I — 1 marginal row

probabilities.
e Namely pi.,p2.,...,pr—1).
® Likewise, we only need to estimate J — 1 column marginals.
Thus,
df = IJ — Number of Constraints - Number of Parameters Estimated

df = IJ—1—(I-D)+(J-1))=IJ-I—J+1=I-1)(J—1)
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Degrees of Freedom for the Product binomial Sampling

® Again, there are IJ cells in our I x J contingency table

® [or the Prospective design, we have constraints that each rows probability sums to 1,
so there are I constraints.

e Although we did not state it directly before, the hypothesis of interest is the
“Homogeneity” hypothesis. That is, that Hy = p;; = p.; forj =1,2,...J. Therefore,
there are J — 1 estimated marginal probabilities.

e Then the DF equals,

df =1J—T1—(J-1)=1J—-T1—-J+1=(I-1)(J—-1)
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In summary for Pearson’s Chi-Square

e [or the remaining study design (Case-Control), the degrees of freedom can be shown
tobe (I —1)(J —1).

e Therefore, regardless of the sample design, the df for any I x J contingency table
using Pearson’s Chi-Squareis (I — 1)(J — 1).

e [orthe 2 x 2 tables we have been studying,

df=2-1x2-1 =1
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Likelihood Ratio Test

e If you recall, we described the df for the likelihood ratio test as the difference in the
number of parameters estimated under the alternative minus the number estimated
under the null.

e Under the multinomial sampling design, the alternative model is that p;; # p;.p.; and
assuch, >, > . pi; = 1. Thus, there is only one constraint and we estimate I.J — 1

cell probabilities.

e Under the null, we have p;; = p;.p.; which is determined by (I — 1) and (J — 1)
marginals. Thus, we only estimate [(/ — 1) + (J — 1)] marginal probabilities.

® Thus, the DF of G2 is

df =T1J-1—[I-D+J-1)]=T-1)(J—1)
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Comparison ofX? andG?

® Pearson and the LRT have same limiting distribution. (both converge in distribution to
x2 withdf = (I —1)(J — 1) as n — oo)

® Pearson’s is score based

e LRT combines the information of the null and alternative hypotheses

® So which one is best?
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ChoosingX? or G?

e X? converges in distribution faster than G2,

e Whenn/IJ < 5 (less than 5 per cell), G2 usually is not a good estimate.

e When [ or J is large, Pearson’s usually is valid when some E;; < 5 but most are
greater than 5.

e Therefore, for the general I x J table, you can usually just use Pearson’s Chi Square.

e \We will now develop a test for small samples.
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Small Samples

Question: Is there Gender Bias in Jury Selection?

SELECTED
FOR JURY
| YES | NO | Total
G @ eeeeaaa-- S ey S R +
E | | |
N FEMALE | 1 | 9 | 10
D | | |
E = e S e +
R | | |
MAL E | 11 | 9 | 20
| | |
--------- o e e e - -+
Tot al 12 18 30

The sampling distribution for this study design is hypergeometric.

However, we will adapt the study design into a small sample exact test.
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e In this study, we COULD consider the column totals fixed by design (since the jury has
to have 12 members), and the row totals random.

® Then, the columns are independent binomials.
® Using SAS

dat a one;

i nput sex $ jury $ count;
car ds;

1FEMALE 1YES 1

1FEMALE 2NO 9

2NMALE 1YES 11

2MALE 2NO 9

proc freq;

tabl e sex*jury/expected chi sq;
wei ght  count;

run;
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TABLE OF SEX BY JURY

SEX JURY
Frequency|
Expected |
Percent |
Row Pct |
Col Pct | 1YES | 2NO | Tot al
--------- TR L J
1FENVALE | 1 | 9 | 10
| 4 | 6 |
| 3.33 | 30.00 | 33.33
| 10.00 | 90.00 |
| 8.33 | 50.00 |
--------- e
2MALE | 11 | 9 | 20
| 8 | 12 |
| 36.67 | 30.00 | 66.67
| 55.00 | 45.00 |
| 91.67 | 50.00 |
--------- e
Tot al 12 18 30
4000 6660 166066
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STATI STI CS FOR TABLE OF SEX BY JURY

Statistic DF Val ue Pr ob
Chi - Squar e 1

Li kel i hood Rati o Chi-Square 1
Continuity Adj. Chi-Square 1

Mant el - Haenszel Chi - Square 1

Phi Coefficient -
Conti ngency Coeffi cient

Craner’s V -

WARNI NG 25% of the cells have expected counts | ess
than 5. Chi-Square may not be a valid test.
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e A rule of thumb in SAS is that the Large Sample approximations for the likelihood ratio
and Pearson’s Chi-Square are not very good if the sample size is small

WARNI NG 25% of the cells have expected counts | ess
than 5. Chi-Square may not be a valid test.

® Suppose for a cross sectional, prospective, or case-control design:
some of the cell counts are small (so that £;; < 5), and you want to make inferences
about the OR.

e A popular technique with small samples is to fix both margins of the (2 x 2) table, and
use ‘Exact Tests’ and confidence intervals.
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Exact Tests - For the x 2 table

Suppose, then, for:
1. A prospective study (rows margins fixed) we further condition on the column margins
2. A case-control study (column margins fixed) we further condition on the rows margins
3. A cross sectional (total fixed) we condition on both row and column margins.
4

In all cases, we have a conditional distribution with row and column margins fixed.
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Question

e \What is the conditional distribution of Y71 given both row and column margins are fixed.

e First note, unlike the other distributions discussed, since the margins are fixed and
known, we will show that this conditional distribution is a function of only one unknown
parameter

e This follows from what we have seen:

e If the total sample size is fixed (cross sectional), we have 3 unknown parameters,
(p11,P12,P21)

e If one of the margins is fixed (prospective, or case-control study), we have two
unknown parameters, (p1,p2) or (71, 72)

e |Intuitively, given we know both margins, if we know one cell count (say Y11), then we
can figure out the other 3 cell counts by subtraction. This implies that we can
characterize the conditional distribution by 1 parameter.

® Thus, given the margins are fixed, we only need to consider one cell count as random,
and, by convention Y7 is usually chosen. (you could have chosen any of the 4 cell
counts, though).
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Can you complete all of the observed cell counts given the information available? Yes.

Column
1 2
Row Yi1 Y.
Yo.
Y1 Yo N =n
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® Question: Then, what is the conditional distribution of Y71 given both row and column
margins are fixed.

P[Yll = y11|y1-7y'17y“7 OR]

e After some tedious algebra, you can show it is non-central hypergeometric, i.e.,

PlY11 = viilyr,y.1,y.,OR| =

( Y1 )( Y- — Y1 >(OR)y11
Y11 Yi- — Y11

v.1 Y.1 Yy.. —Y.1 OR ¢
() (57 e

where, for all designs,

OR= ——
e \We denote the distribution of Y71 by

Yialyr,ya.y )~ HG(y...y.1,y1., OR)
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Notes about non-central hypergeometric

® Again, unlike the other distributions discussed, since the margins are fixed and known,
the non-central hypergeometric is a function of only one unknown parameter, the OR.

® Thus, the conditional distribution given both margins is called non-central
hypergeometric.

e Given both margins are fixed, if you know one of the 4 cells of the table, then you know
all 4 cells (only one of the 4 counts in the table is non-redundant).

e Under the null Hy: OR=1, the non-central hypergeometric is called the central
hypergeometric or just the hypergeometric.

e \We will use the hypergeometric distribution (i.e., the non-central hypergeometric under
Ho: OR=1) to obtain an ‘Exact’ Test for Hy: OR=1. This test is appropriate in small
samples.
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Fisher's Exact Test

Let’s consider the following table with both Row and Column totals fixed.

Column
1 2
Row Yii Yio Y.
Yo1 Yoo | Yo
Y1 Yo N =Y.

Many define the {1, 1} cell as the “Pivot Cell”.

Before we consider the sampling distribution, lets consider the constraints on the Pivot Cell.
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The Valuesl; and -

® \We know that Y7, must not exceed the marginal totals, Y.; or Y.

e Thatis,

Y11 <Yqand Y11 <Yi.

e Therefore, the largest value Y7, can assume can be denoted as L2 in which

Lo = min(Y.l, Yl.)

e Similarly, the minimum value of Y7 is also constrained.
e |t is harder to visualize, but the minimum value Y71 can assume, denoted as L1, is

L1 =max(0,Y1. + Y1 —Y..)
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Example

Suppose you observe the following marginal distribution.

Column

1 2
Row 1 Y11 6
2 3
) 4 19

e \We want to determine L1 and Lo
® So that we can determine the values the Pivot Cell can assume.
e The values in which the Pivot Cell can assume are used in the significance testing.
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Based on the previous slide’s table, L, and L2 are

Ly = max(0,Y:.+Y1—-Y.)
= max(0,6+5—9)
= max(0,2)
= 2
and
Lo = min(Yl., Yl)
= min(6,5)
= 95

Therefore, the values that Y11 can assume are {2,3,4,5}.
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All Possible Contingency Tables

® Since each table is uniquely defined by the pivot cell, the following tables are all of the

possible configurations.

ORg = 0.078 Column
1 2
Row 12 4 6
213 0 3
5 4 9
OR =14 Column
1 2
Row 1|14 2 6
211 2 3
5 4 9

OR = 0.5 Column
1 2
Row 113 3 6
212 1 3
5 4 9
ORg = 25.7 ** | Column
1 2
Row 1 5 1 6
2 O 3 3
5 4 9

® Suppose the table observed is flagged with “***”. When freq = 0, we use 0.5.

e How do we know if the Rows and Columns are independent?

e Note, as Y71 increases, so does the OR.
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Test Statistics

e The probability of observing any given table is

Y11 Y12
P[Yll :y11|Y1.,Y2.,Y.1,Y2] —

e The probability of observing our table is
(2)(1)
5 1
PlY11 =516,3,5,4] =

84
0.0476

e \We now need to develop tests to determine whether or not this arrangement supports
or rejects independence.
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One-sided Tests

® Suppose we want to test
HO:OR: 1 or E(Yll) :yl.y.l/y..
versus

Ha:OR >1 or E(Yll) >y1.y.1/y..

® Lety;i ops be the observed value of Y71; we will reject the null in favor of the
alternative if y11 o5 Is large (recall from the example, as Y71 increases, so does the
OR).

® Then, the exact p—value (one-sided) is the sum of the table probabilities in which the
pivot cell is greater than or equal to the Y71 ops-
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e Or more specifically, The exact p—value looks at the upper tail:

p—value = P[Yi1 > y11,0bs|HO:OR = 1]

( Y1 )( Y2 )
ZLQ:min(y.l,yl.) 14 Y1. —/

‘ezyll,obs Y.
Y1.

e Note that £ increments the values of Y71 to produce the tables as extreme (¢ = Y11 ops
and more extreme (approaching L2)

® Note y1. = y11 +¥12 SO y12 = yY1. — Y11-
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® Suppose we want to test
HO:OR: 1 or E(Yll) Zyl.y.l/y..
versus

HiaOR < 1 or E(Yll) <y1.y.1/y..

e We will reject the null in favor of the alternative if 11 o, is small.

® Then, the exact p—value looks at the lower tail:

p—value = P[Y11 <yi1,0bs|HO:OR = 1]
( Y1 ) ( Y.2 )
. Zyll,obs 4 Yyi- — ¢
o (=Li=MaX(0,y1.+y.1—y..) y..
Y1.
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Fisher’'s Exact Test - Two-sided Test

® Suppose we want to test
HO:OR: 1 or E(Yll) :yl.y.l/y..
versus

Ha:OR # 1 or EY11) #y1.9y1/y..

® The exact p—value here is the exact 2-sided p-value is

seeing a result as likely or
P | less likely than the observed |Hp:OR =1
result in either direction
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In general, to calculate the 2-sided p—value,

1. Calculate the probability of the observed result under the null

T = P[Yll — yll,obs‘HO:OR — 1]

( Y1 )( Y- — Y1 )
Y11,0bs Y1- — Yi11,0bs
()
Y1.
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2. Recall, Y71 can take on the values

max(oayl- + Y1 — y) S Yll S min(yl'ay'l)a
Calculate the probabilities of all of these values,
Ty = P[Yll = €|HO:OR = 1]

3. Sum the probabilities 7, in (2.) that are less than or equal to the observed probability 7 in
1.

min(ys.,y.1)
p —value = Z ol (mp < )
L=max(0,y1.+y.1—vy..)
where
1ifm, <
I(mp <) = fmg <
Oifmy >
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Using our example “By Hand”

Recall, P(Y11 065 = 5) = 0.0476. Below are the calculations of the other three tables.

<5><4>
2 4
PlYi1 = 2/6,3,5,4] = .

84

= 0.1190

<5><4>
3 3
P[Y11 = 3/6,3,5,4] =

10
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( ; )( ) )
4 2
PlYi1 = 4]6,3,5,4] =

30
84

0.3571

® Then,forH4:OR < 1,
p—value = 0.1190 + 0.4762 + 0.3571 + 0.0476 = 1.0

e forHA:OR > 1,
p—value = 0.0476

® ForH4:OR # 1,
p—value = 0.0476 (we observed the most extreme arrangement)
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Using SAS

data test;
i nput row $ col $ count;
cards;
1row 1col
1r ow 2col
2row lcol
2r ow 2col

wWoEr U

run;

proc freq;

t abl es row-col / exact;
wei ght count;

run;
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Frequency|

Percent |

Row Pct |

Col Pct | 1col | 2col | Total

1r ow | 5 | 1 | 6
| 55.56 | 11.11 | 66.67
| 83.33 | 16.67 |
| 100.00 | 25.00 |

2r oW | 0 | 3 | 3
| 0.00 | 33.33 | 33.33
| 0.00 | 100.00 |
| 0.00 | 75.00 |

_________ |- e

Tot al 5 4 9
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Statistics for Table of row by col

Statistic DF Val ue Prob
Chi - Squar e 1 6250 0.0177
Li kel i hood Rati o Chi-Square 1 9586 0. 0083
Continuity Adj. Chi-Square 1 7563 0. 0969
Mant el - Haenszel Chi - Square 1

Phi Coefficient
Conti ngency Coefficient
Craner’s V

WARNI NG 100% of the cells have expected counts | ess
than 5. Chi-Square may not be a valid test.
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Fi sher’ s Exact Test

Cell (1,1) Frequency (F) 5
Left-sided Pr <= F 1. 0000
Ri ght-sided Pr >= F 0.0476
Tabl e Probability (P) 0. 0476
Two-sided Pr <= P 0. 0476

Sanple Size = 9
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General Notes about Fisher’'s Exact Test

® Fisher’s Exact p—values is one of the most frequently used p—values you will find in
the medical literature (for “good studies”)

e However, Cruess (1989) reviewed 201 scientific articles published during 1988 in The
American Journal of Tropical Medicine and Hygiene and found 148 articles with at
least one statistical error. The most common error was found to be the use of a large

sample x? p—value when the sample was too small for the approximation.

® Since the values of Y7 is discrete (highly discrete given a small sample size such as
in our example), the actual number of possible p—values is limited.

e For example, Given our example margins, {0.0476,0.1666,0.5237, 1.0} are our only
potential values.
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® The hypergeometric (when OR = 1) is symmetrically defined in the rows and columns.

Variable (X)

Variable (Y)
2
Y11 Yio Yi.
Y51 Yoo Y.
Y Y.o Y.
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In particular, under Hp : OR =1

(o ) (o)

P[Yll = y11|OR = 1] = ( ’ )

Y1.

(o ) ()
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Expected Value oY;; under the null

e Recall, for the hypergeometric distribution, the margins Y;., Y.; and Y.. are assumed
known and fixed.

e From the theory of the hypergeometric distribution, under the null of no association,
the mean is

B(Yyj|OR = 1) = =2
Y..

e [or other distributions, we could not write the expected value in terms of the possibly
random Y;. and/or Y.;. Since (Y;.,Y.;,Y..) are known for the hypergeometric, we can

write the expected value in terms of them.
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Thus, the null Hy:OR = 1 can be rewritten as

Y

Ho:E(Y;;|OR = 1) = £
..

Under no association,

[it" row total (y;.)] - [7*"* column total (y.;)]

Eij = :
’ [total sample size (y..) ]

Y

is the estimate of E(Y;;) under the null of no association

However, under independence, E;; is the exact conditional mean (not an estimate)
since y;. and y.; are both fixed.
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Miscellaneous notes regardidéf Test

® Suppose we have the following

e and
p2 = .6
® where p; and p2 are the true success rates for a prospective study.
® Thus, the true odds ratio is
.40 - .80 2
R - J—

— =2— = 2.666
.20 - .60 3
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Potential Samples

® Suppose we randomized 50 subjects (25 in each group) and observe the following
table

Success Failure Total

Group 1 10 15 25
Group 2 5 20 25
Total 15 35 50

® And use SAS to test p1 = po
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opti ons nocenter;
dat a one;
| nput row col count;
cards;
11 10
1 2 15
2 15
2 2 20
run;
proc freq dat a=one;
t abl es rowcol/chisqg neasures;
wei ght count ;
run;
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Selected Results

The FREQ Procedure

Fi sher’s Exact Test

Cell (1,1) Frequency (F) 10
Left-sided Pr <= F 0. 9689
Ri ght-sided Pr >= F 0.1083
Tabl e Probability (P) 0.0772
Two-sided Pr <= P 0. 2165

Estimates of the Relative R sk (Rowl/ Row2)

Type of Study Val ue
Case-Control (Odds Rati o) 2.6667
Cohort (Col 1l R sk) 2. 0000
Cohort (Col 2 R sk) 0. 7500

Sanple Size = 50

95% Confi dence Limts
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Example Continued

e For this trial, we would fail to reject the null hypothesis (p=0.2165).
e However, our estimated odds ratio is 2.6666 and relative risk is 2.0
e What would happen if our sample size was larger?
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data two;

| nput row col count;
car ds;

11 40

1 2 60

2 1 20

2 2 80

run;

proc freqg data=two,
t abl es rowcol /chi sqg neasures;
wei ght count ;

run;
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Fi sher’ s Exact Test

Cell (1,1) Frequency (F) 40
Left-sided Pr <= F 0. 9995
Ri ght-sided Pr >= F 0. 0016
Tabl e Probability (P) 0. 0010
Two-sided Pr <= P 0. 0032

Estimates of the Relative R sk (Rowl/ Row2)

Type of Study Val ue
Case-Control (QOdds Rati o) 2. 6667
Cohort (Col 1 Risk) 2. 0000
Cohort (Col 2 Ri sk) 0. 7500

Sanple Size = 200

95% Confidence Limts
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Moral of the Story?

e Both examples have the exact same underlying probability distribution
® Both examples have the exact same estimates for OR and RR
e The statistical significance differed

® A Chi-square (or as presented Fisher’s exact)'s p—value does not indicate how strong
an association is in the data (i.e., a smaller p-value, say < 0.001, does not mean there
is a "strong" treatment effect)

e It simply indicates that you have evidence for the alternative (i.e., p1 # p2).
® You must use a measure of association to quantify this difference

Lecture 7: Testing Independence — p. 48/56



Generalized Odds Ratio

e [orthe 2 x 2 table, a single measure can summarize the association.

® The association could be the Odds Ratio or Relative Risk

® [orthe general I x J case, a single measure cannot summarize the association
without loss of information.

e However, a set of odds ratios or another summary index (such as a correlation
measure) can summarize the association

Note: “Loss of information” can be obtained by collapsing the categories into a 2 x 2
structure.
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Example we will use

Agresti Table 2.1 - Page 37

Myocardial Infarction
Fatal Attack  Nonfatal Attack  No Attack

Placebo 18 171 10845
Aspirin 5 99 10933

We want to estimate the association of Aspirin Use on M.
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Collapsed Categories

We could collapse the Fatal Attack and Nonfatal Attack categories together to obtain

Myocardial Infarction

Fatal Attack or No
Nonfatal attack | Attack
Placebo 189 10845
Aspirin 104 10933
Then, the OR of having a Ml is
_ 189%10933
ORMmr = 104+10933
= 1.83

Thus, the odds of a Ml are 1.83 times higher when taking placebo when compared to aspirin.
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Generalized Odds Ratio

® There are ( ; ) pairs of rows
J :
e and ( 5 ) pairs of columns

e that can produce ( é ) ( ; ) estimates of the odds ratio

e \We are going to consider three cases for the generalized odds ratio
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Case l

For rows a and b and columns c and d, the odds ratio (mqcmpq/TpeTaq) IS the most loosely
defined set of generalizes ORs.

There are ( ; ) ( ‘2] ) of this type.

For our example, lets compare Fatal Ml to No MI.

~ 18% 10933
ORfataI vs. No Ml — 5% 10845 3.63

That is, the odds of a having a fatal Ml vs No Ml are 3.63 times higher for the Placebo group
when compared to the group taking Aspirin.
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Case 2: Local ORs

The local ORs are obtained by comparing adjacent rows and columns.

That is,
T4 i Tit] 71
ORZ — 1] 7'_'_ 73"’
Tit1,5T4,5+1

For our example, we could obtain 2 local ORs

1. Fatal Ml vs. Non Fatal MI (OR = (18 -99)/(5 - 171) = 2.08)

2. Non Fatal Ml vs. No MI (OR = (171 -10933)/(99 - 10845) = 1.74)
Note: There are (I — 1)(J — 1) local odds ratio.
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Case 3: Last Column (Reference) OR

For the I x J table with I representing the last row and J representing the last column, then

;= — Ci=1,2...1-1, j=1,2,....,J—1

represents the OR obtained by referencing the last row and last column. For our example,
1. a11 = (18 % 10933)/(5 * 10933) = 3.62
2. aj2 = (171 %10933)/(99 x 10845) = 1.74
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Summary of Generalized Methods

e The setof (I —1)(J — 1) ORs contain much redundant information
® As illustrated, many of the approaches provide the same result

e \When interpreting the ORs, be mindful of the reference category and state it in the
summary

® Independence is equivalenttoall (/ —1)(J —1) ORs =1
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