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Overview

• Over the next few lectures, we will examine the 2 × 2 contingency table

• Some authors refer to this as a “four fold table”

• We will consider various study designs and their impact on the summary measures of
association
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Rows Fixed: Product Binomial Case - Generally Prospec-

tive Studies

Question of interest: Does treatment affect outcome?
OUTCOME

NO
|COLD | COLD | Total

T ---------+--------+--------+
R VITAMIN | | |
E C | 17 | 122 | 139 <--|
A | | | | (fixed
T ---------+--------+--------+ |-- by
M NO | | | | design)
E VITAMIN | 31 | 109 | 140 <--|
N C | | |
T ---------+--------+--------+

Total 48 231 279
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Columns Fixed: Also Product Binomial - Generally Retro-

spective Studies

Question of interest: Does alcohol exposure vary among cases and controls?
STATUS

|CASE |CONTROL | Total
A ---------+--------+--------+
L 80+ | | |
C (gm/day) | 96 | 109 | 205
O | | |
H ---------+--------+--------+
O 0-79 | | |
L (gm/day) | 104 | 666 | 770

| | |
---------+--------+--------+
Total 200 775 975

ˆ ˆ
| |
----------
(fixed by design)

Lecture 5: Contingency Tables – p. 4/46



N Fixed: Multinomial Case - Generally Cross-Sectional

Studies

Question of interest: Is there an association among cancer stage and smoking status?
CANCER STAGE

NOT
|SPREAD |SPREAD | Total

S ---------+--------+--------+
M YES | | |
O | 300 | 600 | 900
K | | |
E ---------+--------+--------+

NO | | |
| 500 | 3000 | 3500
| | |

---------+--------+--------+
Total 800 3600 4400 <---(fixed

by design)
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Rows and Columns Fixed: Hypergeometric Case

Question of Interest: Is there gender bias in juror selection?
SELECTED
FOR JURY

|YES |NO | Total
G ---------+--------+--------+
E | | |
N FEMALE | 1 | 9 | 10
D | | |
E ---------+--------+--------+
R | | |

MALE | 11 | 9 | 20
| | |

---------+--------+--------+
Total 12 18 30

This distribution is will be used in Fisher’s Exact testing.
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Prospective Studies

We are going to begin examining contingency tables first by looking at prospective studies.

• Number on each treatment (or experimental) arm fixed by design.

• Rows are independent binomials.

• Question of interest: Does treatment affect outcome ?

• Usually the design for Experimental Studies, Clinical Trials.

In general, the 2 × 2 table is written as

Outcome
1 2

Treatment 1 Y1 n1 − Y1 n1

2 Y2 n2 − Y2 n2
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Facts about the distribution

• n1 and n2 are fixed by design

• Y1 and Y2 are independent with distributions:

Y1 ∼ Bin(n1, p1)

Y2 ∼ Bin(n2, p2)

• The distribution is the product of 2 independent binomials; often called the ‘product
binomial’:

P (y1, y2|p1, p2) = P (Y1 = y1|p1)P (Y2 = y2|p2)

=

 
n1

y1

! 
n2

y2

!
py1

1 (1 − p1)n1−y1py2

2 (1 − p2)n2−y2
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Question of interest (all the same)

• Does treatment affect outcome ?

• Are treatment and outcome associated ?

• Is the probability of success the same on both treatments ?

• How do we quantify treatment differences?

• Also, what test statistics can we use for

H0:p1 = p2 = p

and the alternative is
HA:p1 6= p2
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MLE and estimated SEs of treatment differences

• To estimate these treatment differences, we must estimate the success probabilities p1

and p2.

• Intuitively, thinking of the two groups separately, the MLE’s should be the proportion of
successes in the two groups, i.e.,

bp1 =
Y1

n1

and

bp2 =
Y2

n2
.

• However, we will derive these based on the likelihood of the product binomial.
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The Likelihood for (p1, p2) is the product binomial distribution of (y1, y2, p1, p2).

L(p1, p2) = P (Y1 = y1|p1)P (Y2 = y2|p2)

=

 
n1

y1

! 
n2

y2

!
py1

1 (1 − p1)n1−y1py2

2 (1 − p2)n2−y2
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Then the log-likelihood is the sum of the two pieces,

log L(p1, p2) =

log

" 
n1

y1

!
py1

1 (1 − p1)n1−y1

#
+ log

" 
n2

y2

!
py2

2 (1 − p2)n2−y2

#

Similar to before, to find the MLE, we set the partial derivatives of log L(p1, p2) with respect
to p1 and p2 to 0, and solve for bp1 and bp2 :

Note: Agresti (and most statisticians) simply denote the natural logarithm as log instead of
the ln as you would see in mathematics or physics. In this class, all references of log are
consider the log to base e.
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Now,

log L(p1, p2) =

log

" 
n1

y1

!
py1

1 (1 − p1)n1−y1

#
+ log

" 
n2

y2

!
py2

2 (1 − p2)n2−y2

#

The derivative of the log-likelihood with respect to p1 is

d log L(p1,p2)
dp1

= d
dp1

log

" 
n1

y1

!
py1

1 (1 − p1)n1−y1

#
+

d
dp1

log

" 
n2

y2

!
py2

2 (1 − p2)n2−y2

#

= d
dp1

log

" 
n1

y1

!
py1

1 (1 − p1)n1−y1

#
+ 0

since the the second part is not a function of p1.
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Note, though,

d log L(p1, p2)

dp1
=

d

dp1
log

" 
n1

y1

!
py1

1 (1 − p1)
n1−y1

#

is just the derivative of a binomial log-likelihood with respect to its parameter p1. From
before, we have

bp1 =
y1

n1

To explicitly show this, in the single binomial section, we showed that

d log L(p1, p2)

dp1
=

d

dp1
log

" 
n1

y1

!
py1

1 (1 − p1)n1−y1

#
=

y1 − n1p1

p1(1 − p1)

Similarly,
d log L(p1, p2)

dp2
=

y2 − n2p2

p2(1 − p2)
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Then, the MLE’s are found by simultaneously solving

d log L(p1, p2)

dp1
=

y1 − n1bp1

bp1(1 − bp1)
= 0

and

d log L(p1, p2)

dp2
=

y2 − n2bp2

bp2(1 − bp2)
= 0

which gives

bp1 =
y1

n1

and

bp2 =
y2

n2
.

provided that bp1, bp2 6= 0, 1
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Since Y1 and Y2 are independent binomials we know that

V ar(bp1) =
p1(1 − p1)

n1

and

V ar(bp2) =
p2(1 − p2)

n2
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Estimating the treatment differences

To obtain the MLE of the log-odds ratio, we just plug bp1 and bp2 in to get

log(dOR) = log
“

bp1/(1−bp1)
bp2/(1−bp2)

”

= logit(bp1) − logit(bp2)

Now, suppose we want to estimate the variance of log(dOR).

Since the treatment groups are independent, logit(bp1) and logit(bp2) are independent, so that

Cov[logit(bp1), logit(bp2)] = 0,

The variance of differences of independent random variables is

V ar[log(dOR)] = V ar[logit(bp1) − logit(bp2)]

= V ar[logit(bp1)] + V ar[logit(bp2)]
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Delta method approximation

• The V ar[log(dOR)] can be approximated by the delta method

• To do so we need to calculate

d
d p

[log(p) − log(1 − p)] = 1
p
− −1

1−p

= 1
p(1−p)

• Therefore,

Var
“
log( p

1−p
)
”

=
“

1
p(1−p)

”2 p(1−p)
n

= 1
np(1−p)

= 1
np

+ 1
n(1−p)

• Using these results from the Delta Method, we have

V ar[logit(bp1)] =
1

n1p1
+

1

n1(1 − p1)

and

V ar[logit(bp2)] =
1

n2p2
+

1

n2(1 − p2)
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Then,

V ar[log(dOR)] = V ar[logit(bp1)] + V ar[logit(bp2)]

= 1
n1p1

+ 1
n1(1−p1)

+ 1
n2p2

+ 1
n2(1−p2)

which we estimate by replacing p1 and p2 with bp1 and bp2,

dV ar[log(dOR)] = 1
n1 bp1

+ 1
n1(1−bp1)

+ 1
n2 bp2

+ 1
n2(1−bp2)

= 1
y1

+ 1
n1−y1

+ 1
y2

+ 1
n2−y2

Note: This is the same result we obtained in the previous lecture; however, in this case we
assumed two independent binomial distributions.
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General formula for variance of treatment difference

The MLE of a treatment difference

θ = g(p1) − g(p2)

is
θ̂ = g(bp1) − g(bp2)

Also, since bp1 and bp2 are independent, so g(bp1) and g(bp2) are independent.

Recall, the variance of a difference of two independent random variables is

V ar[g(bp1) − g(bp2)] = V ar[g(bp1)] + V ar[g(bp2)]

Then, to obtain the large sample variance, we can apply the delta method to g(bp1) to get
V ar[g(bp1)] and to g(bp2) to get V ar[g(bp2)] and then sum the two.
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The results are summarized in the following table:

TREATMENT
DIFFERENCE ESTIMATE Var(ESTIMATE)

RISK DIFF bp1 − bp2
p1(1−p1)

n1

+
p2(1−p2)

n2

log (RR) log
“

bp1

bp2

”
1−p1

n1p1

+ 1−p2

n2p2

log (OR) log
“

bp1/(1−bp1)
bp2/(1−bp2)

” h
1

n1p1

+ 1
n1(1−p1)

i
+
h

1
n2p2

+ 1
n2(1−p2)

i
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ESTIMATES of Standard Error, and LARGE SAMPLE

CONFIDENCE INTERVALS

To estimate the variances, we can replace p1 and p2 with bp1 and bp2.

dV ar(bp1 − bp2) =
bp1(1 − bp1)

n1
+
bp2(1 − bp2)

n2
;

dV ar[log(dRR)] =
1 − bp1

n1bp1
+

1 − bp2

n2bp2
;

dV ar[log(dOR)] = 1
n1 bp1

+ 1
n1(1−bp1)

+ 1
n2 bp2

+ 1
n2(1−bp2)

= 1
y1

+ 1
n1−y1

+ 1
y2

+ 1
n2−y2
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Then Large Sample 95% confidence interval for treatment differences can be obtained via

(bp1 − bp2) ± 1.96

s
bp1(1 − bp1)

n1
+
bp2(1 − bp2)

n2

log(dRR) ± 1.96

s
1 − bp1

n1bp1
+

1 − bp2

n2bp2

and

log(dOR) ± 1.96

s
1

y1
+

1

n1 − y1
+

1

y2
+

1

n2 − y2
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Confidence Interval for OR and RR

• You want a confidence interval for RR or OR that is assured to be in the interval
(0,∞).

• Similar to what we did for a confidence interval for p, it is first better to get confidence
intervals for log(RR) or log(OR), and to exponentiate the endpoints :
i.e.,

exp{log(dOR) ± 1.96

q
dV ar[log(dOR)]},

and

exp{log(dRR) ± 1.96

q
dV ar[log(dRR)]},
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Example: MI example

• Suppose clinical trial participants are randomized to either Placebo or Aspirin

• The subjects are followed prospectively for 5 years to determine whether or not an MI
(or heart attack) occurs

• The following table summarizes the results

Myocardial Infarction
Heart or No Total per
Attack Attack Arm

Placebo 189 10845 11,034

Aspirin 104 10933 11,037

• About 11000 randomized to each treatment
• Overall probability of heart attack is low

293

22071
= 1.33%

The disease is ‘rare’.
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Estimates and Test Statistics

The test statistics for
H0 : p1 = p2

versus
HA : p1 6= p2

Estimated Z−Statistic
Parameter Estimate Standard Error (Est/SE)

RISK DIFF .0077 .00154 5.00

log(RR) .598 .1212 4.934
(RR=1.818)

log(OR) .605 .1228 4.927
(OR=1.832)

• In each case, we reject the null, and the Z−statistic is about 5.
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Confidence Intervals Creation

• The following are the 95% confidence intervals

Parameter Estimate 95% C.I.

RISK DIFF .0077 [.0047,.0107]

RR 1.818 [1.433,2.306]

OR 1.832 [1.440,2.331]

• For the OR and RR, we exponentiated the 95% confidence intervals for the log(OR)

and log(RR), respectively.

• None of the confidence intervals contain the null value for no association (0 for the
RISK DIFFERENCE, 1 for the OR and RR).
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Interpretation

• The risk difference has the interpretation that the
‘Excess Risk’ of a heart attack on Placebo is .0077. This ‘fraction’ is not very
meaningful for rare diseases, but stated in terms of subjects, we can say that we would
expect 77 more heart attacks in 10000 placebo subjects than in 10000 aspirin users.

• The relative risk has the interpretation that
Individuals on Placebo have almost twice (1.8) the risk (or probability) of a heart attack
than individuals on Aspirin

• The odds ratio has the interpretation that
Individuals on Placebo have almost twice (1.8) the odds of a heart attack versus no
heart attack than individuals on Aspirin
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Relationship between OR and RR

• Recall,

OR =
p1/(1 − p1)

p2/(1 − p2)

OR =
p1/(1−p1)
p2/(1−p2)

=
“

p1

p2

” h
1−p2

1−p1

i

= RR
h

1−p2

1−p1

i

• When the disease is rare (in the example, bp2 < bp1 < 2%),

»
1 − p2

1 − p1

–
≈

1

1
= 1; and OR ≈ RR.

• In the example, dOR = 1.832, dRR = 1.818; i.e., they are almost identical.
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Likelihood Ratio Test

• Now, we want to test the null hypothesis

H0:p1 = p2 = p

versus the alternative
HA:p1 6= p2

with the likelihood ratio statistic (the likelihood ratio statistic generally has a two-sided
alternative...i.e., it is χ2 based).

• The general likelihood ratio statistic involves the estimate of p1 = p2 = p under the null
and (p1, p2) under the alternative.

• Thus, unlike the simple single binomial sample we discussed earlier, in which the null
was

H0:p = .5

the parameters are not completely specified under the null. i.e., we must still estimate
a common p under the null for the likelihood ratio.
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General Likelihood Ratio Statistic

• The likelihood is a function of the parameter vector p = [p1, p2]′.

• In large samples, it can be shown that

2 log
n

L(bp1,bp2|HA)

L(p̃1,p̃2|H0)

o
=

2[log L(bp1, bp2|HA) − log L(p̃1, p̃2|H0)] ∼ χ2
df

• where
L(bp1, bp2|HA)

is the likelihood after replacing [p1, p2] by its estimate, [bp1, bp2] under HA

• and
L(p̃1, p̃2|H0)

is the likelihood after replacing [p1, p2] by its estimate, [p̃1, p̃2], under H0 (In our case,
[p̃1, p̃2] = [bp, bp]′ since p1 = p2 = p under the null ).

• and the degrees-of-freedom df is the difference in the number of parameters
estimated under the alternative and null (In our example, df = 2 − 1 = 1).
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MLE under the Null

• Thus, to use the likelihood ratio statistic, we need to estimate the common p under the
null hypothesis.

• When H0 : p1 = p2 = p,

E(Y1) = n1p

and
E(Y2) = n2p

• Then,
E(Y1 + Y2) = E(Y1) + E(Y2) = n1p + n2p = (n1 + n2)p

• The ‘pooled’ estimate of p is

bp =

„
Y1 + Y2

n1 + n2

«
=

„
total # successes
total sample size

«

which is unbiased and the MLE.

• Intuitively, when the probability of success is the same on both treatments, the best
estimate (MLE) of p is obtained by pooling over the treatments.
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Using the likelihood to obtain the MLE under the null

• Under the null H0:p1 = p2 = p, the MLE of p is obtained from the likelihood

L(p) =

 
n1

y1

! 
n2

y2

!
py1 (1 − p)n1−y1py2 (1 − p)n2−y2

=

 
n1

y1

! 
n2

y2

!
py1+y2 (1 − p)(n1+n2)−(y1+y2),

• Then,

d log L(p)

dp
=

d

dp1
log

" 
n1

y1

! 
n2

y2

!#

+
d

dp1
log[py1+y2 (1 − p)(n1+n2)−(y1+y2)]

=
y1 + y2 − (n1 + n2)p

p(1 − p)
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• This is the same first derivative as a single binomial sample, in fact, under the null,

Y1 + Y2 ∼ Bin(n1 + n2, p),

and it is easily shown that the solution is

bp =
Y1 + Y2

n1 + n2
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Using the Estimates to obtain the Likelihood Ratio Statistic

• Under the alternative,

bp1 =
Y1

n1
and bp2 =

Y2

n2
,

and

log[L(bp1, bp2|HA)] =

log

 
n1

y1

!
+ y1 log(bp1) + (n1 − y1) log(1 − bp1)+

log

 
n2

y2

!
+ y2 log(bp2) + (n2 − y2) log(1 − bp2)
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Then,

log[L(bp, bp|H0)] =

log

 
n1

y1

!
+ y1 log(bp) + (n1 − y1) log(1 − bp)+

log

 
n2

y2

!
+ y2 log(bp) + (n2 − y2) log(1 − bp)

• Under the alternative, we estimate 2 parameters, under the null, we estimated 1, so
df = 2 − 1 = 1.

• Then, we take 2 times the differences in the log-likelihoods and compare it to a
chi-square with 1 df.
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Simplification of the Likelihood Ratio Statistic

• Then, the likelihood ratio statistic equals 2 times the difference in the log-likelihoods
under the alternative and null, or

G2 = 2[y1 log
“

bp1

bp

”
+ (n1 − y1) log

“
(1−bp1)
(1−bp)

”

+y2 log
“

bp2

bp

”
+ (n2 − y2) log

“
(1−bp2)
(1−bp)

”
]

= 2[y1 log
“

y1

n1 bp

”
+ (n1 − y1) log

“
n1−y1

n1(1−bp)

”
+

+y2 log
“

y2

n2 bp

”
+ (n2 − y2) log

“
n2−y2

n2(1−bp)

”
]

∼ χ2
1

under the null, in large samples.
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‘OBSERVED’ and ‘EXPECTED’ Cell Counts

• First, let’s look at the (2 × 2) table of ‘OBSERVED’ Cell Counts.

OUTCOME
1 2

1 Y1 (n1 − Y1) n1

TRT
2 Y2 (n2 − Y2) n2

total Y1 + Y2 [(n1 + n2) (n1 + n2)

−(Y1 + Y1)]
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• If we look at the likelihood ratio statistic,

G2 = 2[y1 log
“

y1

n1 bp

”
+ (n1 − y1) log

“
n1−y1

n1(1−bp)

”
+

+y2 log
“

y2

n2 bp

”
+ (n2 − y2) log

“
n2−y2

n2(1−bp)

”
]

• In the numerator of the log’s, we have the observed cell counts for the 4 cells in the
table.

• Sometimes, statisticians let
Oij

denote the observed count in row i, column j,

O11 = Y1, O12 = n1 − Y1, O21 = Y2, O22 = n2 − Y2
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• Then, we can rewrite the observed table as

OUTCOME
1 2

1 O11 O12 O11 + O12

TRT
2 O21 O22 O21 + O22

total O11 + O21 O12 + O22

• We will show that the likelihood ratio statistic is often written as

G2 = 2[y1 log
“

y1

n1 bp

”
+ (n1 − y1) log

“
n1−y1

n1(1−bp)

”
+

+y2 log
“

y2

n2 bp

”
+ (n2 − y2) log

“
n2−y2

n2(1−bp)

”
]

= 2
P2

i=1

P2
j=1 Oij log

“
Oij

Eij

”
,
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Simple Form of the Estimated Expected Counts

• First, suppose p1 6= p2,

• Then, the (2 × 2) table of expected cell counts is

OUTCOME
1 2

1 n1p1 n1(1 − p1) n1

TRT
2 n2p2 n2(1 − p2) n2

total n1p1 + n2p2 [(n1 + n2) (n1 + n2)

−(n1p1 + n2p2)]

• If we look at the n1 subjects in the first row, we expect n1p1 subjects to have outcome
1, and n1(1 − p1) of them to have outcome 2.

• Similarly, if we look at the n2 subjects in the second row, we expect n2p2 subjects to
have outcome 1, and n2(1 − p2) of them to have outcome 2.
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• Under the null, when the probability of success is the same on both treatments,
p1 = p2 = p, the table of expected counts looks like

OUTCOME
1 2

1 n1p n1(1 − p) n1

TRT
2 n2p n2(1 − p) n2

total (n1 + n2)p [(n1 + n2)(1 − p)] (n1 + n2)

• Here, if we look at the n1 subjects in the first row, we expect n1p subjects to have
outcome 1, and n1(1 − p) of them to have outcome 2.

• Similarly, if we look at the n2 subjects in the second row, we expect n2p subjects to
have outcome 1, and n2(1 − p) of them to have outcome 2.
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• Under H0 : p1 = p2 = p, the table of estimated expected counts looks like

OUTCOME
1 2

1 n1bp n1(1 − bp) n1

TRT
2 n2bp n2(1 − bp) n2

total (n1 + n2)bp [(n1 + n2)(1 − bp)] (n1 + n2)

• where, recall, bp is the ‘pooled’ estimate of p,

bp =

„
Y1 + Y2

n1 + n2

«
=

„
total # successes

total sample size

«
.

• These estimated expected counts are denoted Eij , (ith row, jth column), and are
found in the denominator of the likelihood ratio statistic, with

E11 = n1bp, E12 = n1(1 − bp), E21 = n2bp, E22 = n2(1 − bp)
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Simplification of Expected Cell Counts

• Substituting

bp =
Y1 + Y2

n1 + n2
,

and

1 − bp = 1 −
Y1 + Y2

n1 + n2
=

(n1 + n2) − (Y1 + Y2)

n1 + n2
,

in the table, we get the Eij ’s,

OUTCOME
1 2

1 n1(Y1+Y2)
n1+n2

n1[(n1+n2)−(Y1+Y2)]
n1+n2

n1

TRT

2 n2(Y1+Y2)
n1+n2

n2[(n1+n2)−(Y1+Y2)]
n1+n2

n2

total (Y1 + Y2) [(n1 + n2) (n1 + n2)

−(Y1 + Y2)]

Lecture 5: Contingency Tables – p. 44/46



• From this table, you can see that

Eij =
[ith row total] · [jth column total]

[total sample size (n1 + n2) ]
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Summary

• We did all this to show that

G2 = 2
2X

i=1

2X

j=1

Oij log

„
Oij

Eij

«

• Note that, we can also write this as

G2 = 2
2X

i=1

2X

j=1

Oij [log(Oij) − log(Eij)]

• Writing it this way, we see that the likelihood ratio measures the discrepancy between
the log of the observed counts, and the log of estimated expected counts under the
null; if they are similar, you would expect the statistic to be small, and the null not to be
rejected.
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