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Terminology

The following denotes a standard 2 x 2 table.

Column
1 2

Row 1 n11 n12 n1·

2 n21 n22 n2·

n·1 n·2 N = n··

• n1· =
P

j nij represents the sum of row 1 over columns of J (1 and 2 in this example).

• This table can be generalized into an IxJ table where I represents the number of
rows and J represents the number of columns.
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Comparing Two Proportions

• Suppose you want to compare binary responses across a two factor group effect.

• Denote the response variable as Y and group variable as X.

• Let p1 denote the probability of success given group 1 (i.e., P (Y = 1|X = 1))

• Let p2 denote the probability of success given group 2 (i.e., P (Y = 1|X = 2))

In terms of a (product binomial) contingency table,

Binary Response (Y)
Success (Y=1) Failure (Y=2)

Group (X) 1 p1 1 − p1 1

2 p2 1 − p2 1

• When p1 6= p2, we want to quantify how the two probabilities are different or are
associated.

• In other words, we want a single measure of how the treatments differ.
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Quantifying treatment differences

There are two general classes of statistics that measure “association” of variables.

1. Absolute Measures
• Measure the actual reduction in number of cases
• Often used in a public health prevention study where the total number of cases

reduced is of value
• Absolute measures are relevant to the group as a whole (limits interpretation and

application)

2. Relative Measures
• Express how much more likely one group is to experience the outcome compared

to another group

• Relative measures can be interpreted at the individual level.

The research objective assists in the determination of which measure to use. Fortunately,
both classes of measurement are obtainable from the same dataset.
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Absolute Measures

Risk Difference

• Let ∆ be defines as follows:

∆ = p1 − p2, −1 ≤ ∆ ≤ 1,

• When the two rows are similar, ∆ → 0 and indicates no group differences.

• Suppose p1 = .1 and p2 = .2 then ∆ = .1 − .2 = −.1

Number Needed to Treat (NNT)

• ‘NNT’ is defined as the inverse of the absolute risk reduction

• i.e., NNT = 1/∆
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Example NNT

The results of the Diabetes Control and Complications Trial* into the effect of intensive
diabetes therapy on the development and progression of neuropathy indicated that
neuropathy occurred in 9.6% of patients randomized to usual care and 2.8% of patients
randomized to intensive therapy. The NUMBER of patients we NEED TO TREAT with the
intensive diabetes therapy to prevent one additional occurrence of neuropathy can be
determined as follows:

RD = |9.6% - 2.8%| = 6.8%
NNT = 1/RD = 1/6.8

We therefore need to treat 15 diabetic patients with intensive therapy to prevent one from
developing neuropathy.

*(Ann Intern Med 1995; 122:561-8)
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NNT in details

Definitions
TREATED CONTROLS

ADVERSE EVENT YES a b
NO c d

LET:

pc = proportion of subjects in control group who suffer an event

pc = b / (b+d)

pt = proportion of subjects in treated group who suffer an event

pt = a / (a+c)

er = expected/baseline risk in untreated subjects

THEN:

Relative risk of event (RRe) = pt / pc
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NNT

Relative risk of no event (RRne) = (1-pt) / (1-pc)

Odds ratio (OR) = (a*d) / (b*c)

Relative risk reduction (RRR) = (pc-pt) / pc = 1-RRe

Absolute risk reduction (ARR)/ risk difference (RD) = pc-pt

Number needed to treat (NNT):

NNT [risk difference] = 1 / RD

NNT [relative risk of event] = 1 / (pc*RRR)

NNT [relative risk of no event] = 1 / ((1-pc)*(RRne-1))

NNT [odds ratio] = (1-(pc*(1-OR)) / (pc*(1-pc)*(1-OR))

The most commonly quoted NNT statistic is NNT [risk difference] or
the empirical NNT, which assumes a constant risk difference over
different expected event rates.
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Movement towards relative measures

• When p1 or p2 is close to 0 or 1, then ∆ may have greater meaning.

Example:

Scenario A: Let p1 = 0.010 and p2 = 0.001, then ∆a = 0.009.

Scenario B: Let p1 = 0.410 and p2 = 0.401, then ∆b = 0.009.

Note that both ∆a = ∆b = 0.009, but that a 0.009 unit change in Scenario A seems more
important than a 0.009 unit change in Scenario B.

This "importance" is quantified by Relative Measures of Association
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Relative Risk or Risk Ratio

Define, Relative Risk (RR) as

RR =
p1

p2
0 ≤ RR ≤ ∞,

A RR = 1 indicates independence (no association).

For the previous scenarios,

RRa = 0.010/0.001

= 10.0

RRb = 0.410/0.401

= 1.02

The estimate of RR dependent on the definition of the “success”. We will explore this
concept later.
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Log-Relative Risk

The log-relative risk is often used to alleviate the restrictions that the relative risk must be
positive:

log RR = log

„
p1

p2

«
= log(p1) − log(p2)

where
−∞ ≤ log RR ≤ ∞.

Log(RR) is also directly estimable using generalized linear models (GLM).
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Relative Measures - Odds Ratio

• Recall the definition of odds,

pt

(1−pt)
= odds of success versus failure

on group t

• Then the ratio of the odds (odds ratio or OR) for group 1 to group 2 is

OR =
p1/(1 − p1)

p2/(1 − p2)
=

p1(1 − p2)

p2(1 − p1)
0 ≤ OR ≤ ∞,
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• Again, the log-odds ratio is often used to alleviate the restrictions that the odds ratio
must be positive, i.e.,

log OR = log
“

p1/(1−p1)
p2/(1−p2)

”

= log
“

p1
1−p1

”
− log

“
p2

1−p2

”

= logit(p1) − logit(p2)

where −∞ ≤ log OR ≤ ∞
• Note that the log(OR) is the difference in logits.
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Additional Examination of OR

OR =
P (Y =1|X=1)
P (Y =2|X=1)
P (Y =1|X=2)
P (Y =2|X=2)

Using Bayes’s Law,

P (Y = 1|X = 1) = P (Y = 1
T

X = 1)/P (X = 1)

P (Y = 2|X = 1) = P (Y = 2
T

X = 1)/P (X = 1)

P (Y = 1|X = 2) = P (Y = 1
T

X = 2)/P (X = 2)

P (Y = 2|X = 2) = P (Y = 2
T

X = 2)/P (X = 2)

SO

OR =
P (Y =1

T

X=1)P (Y =2
T

X=2)
P (Y =1

T

X=2)P (Y =2
T

X=1)

= π11π22
π12π21
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Estimating OR

We will see later that some study designs allow for you to estimate only one of the following

1. P (Y = i
T

X = j) = πij (cross sectional data)

2. P (Y = i|X = j) (prospective study stratified by row)

3. P (X = j|Y = i) (retrospective (case-control) study stratified by column)

Regardless of the study design (or sampling mechanism), through the previous equalities,
OR can be estimated by

dOR =
n11n22

n12n21

since,

cπij = nij/n

However, RR is only defined in studies where you can estimate item 2 above and item 2
occurs naturally in prospective studies.
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Example

Suppose you observe the following:

Outcome
Cold No Cold

Treatment Vitamin C 17 122 139
No Vitamin C 31 109 140

48 231 279

We want to estimate RR, OR, log(RR) and log(OR).

RR = p1/p2

=
17/139
31/140

= 0.5523

log(RR) = log(0.5523) = −0.5937

OR =
p1/(1−p1)
p2/(1−p2)

= 17×109
31×122

= 0.4900

log(OR) = log(0.4900) = −0.7133
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Interpretation

In this example, our "success" was catching a cold. So, the following represent the correct
interpretation of the estimates of RR and OR.

RR: The proportion of subjects likely to develop a cold who are under Vitamin C supplement
is 0.5523 times the proportion to develop a cold NOT under Vitamin C supplement / Subjects
taking Vitamin C supplements were about 46% (1 - 0.5523) less likely to develop a cold than
subjects who did not take Vitamin C supplements

OR: The odds of catching a cold from those under Vitamin C supplement is 0.49 times the
odds for those NOT under Vitamin C supplement/The odds of catching a cold for subjects
taking Vitamin C supplements were 51% (1 - 0.49) less than subjects not taking Vitamin C.

Note: When you use RR, you can discuss likelihood (or probability of an outcome), but when
you use OR, you can only draw inference on ODDS.
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Properties of OR

Previously, we defined a "success" as catching a cold. It would seem reasonable that a
successful treatment would prohibit a cold. Therefore, a success could have been defined as
"no cold".

If we "flip" the columns, we get

Outcome
No Cold Cold

Treatment Vitamin C 122 17 139
No Vitamin C 109 31 140

231 48 279

and ORNo Cold = (122 ∗ 31)/(109 ∗ 17) = 2.041 and
RRNo Cold = (122/139)/(109/140) = 1.127.
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Reciprocals of OR and RR

Note that

ORNo Cold = 2.041

= 1/.4900

= 1/ORCold

but that

RRNo Cold = 1.127

6= 1/.5523 (1/.5523 = 1.81)
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Interpretation

Odds Ratio (for preventing a cold):

The odds of not catching a cold while taking vitamin c supplements is twice the odds of not
catching a cold when not taking vitamin c.

Relative Risk (for preventing a cold):

An individual taking vitamin c supplements is about 12% more likely to avoid catching a cold
than a person who does not take the vitamin c supplements.

Note: OR ≈ 2; however, this does not mean that p1 ≈ 2 · p2 (that is a relative risk of 2).
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Why the log?

It is not easy to see that 2.041 and 0.490 represent the same level of effect. However, in log
terms
log(2.041) = 0.713

and

log(0.490) = -0.713

Now, you can see that both represent the same level of effect, just in different in direction.

Additional advantages of thinking in terms of logs is that log(ODDS) (or logits) are a special
case of a generalized regression model we will discuss later.
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Relationship of OR to RR

OR =
p1/(1−p1)
p2/(1−p2)

= p1
p2

· 1−p2
1−p1

= RR · 1−p2
1−p1

1−p2
1−p1

represents the bias when using OR as an estimate for RR.

When “p is small” for both the groups, 1−p2
1−p1

≈ 1, OR ≈ RR. See section 2.2.5 of Agresti.

Again, in this case, odds-ratio provides a rough indication of the relative risk (when it is not
directly estimable in case of a case-control study).

However, when “p is large”, 1−p2
1−p1

6= 1, so OR provides a poor estimate for RR.
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Figure 1 Relative Risk and Odds Ratio for a fixed risk difference of RD = P1 − P2 = −0.05
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Treatment Difference

Note ∆, log(RR) and log(OR) can be considered treatment differences on different scales,
each can be written as

g(p1) − g(p2)

for the appropriate function g(a) :

TREATMENT
DIFFERENCE g(a) g(p1) − g(p2)

RISK DIFF a p1 − p2

log (RR) log(a) log(p1) − log(p2)

log (OR) log
“

a
1−a

”
log

“
p1

1−p1

”
− log

“
p2

1−p2

”

The function g(·) will surface later and be called the “link” function.
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One sided Alternatives

Note, under the null H0 : p1 = p2 = p, the treatment difference on all scales equals 0, i.e.,

g(p1) − g(p2) = g(p) − g(p) = 0.

In general, we can form the following table:

Null (H0) (HA1) (HA2)
NO ASSOCIATION ALTERNATIVE 1 ALTERNATIVE 2

PROBS p1 = p2 p1 > p2 p1 < p2

RISK DIFF ∆ = 0 ∆ > 0 ∆ < 0

log (RR) log(RR) = 0 log(RR) > 0 log(RR) < 0

log (OR) log(OR) = 0 log(OR) > 0 log(OR) < 0

All 3 = 0 All 3 > 0 All 3 < 0

All measures are in the same direction (+,− or 0).
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Motivation

• In categorical data analysis, we often take a function of a statistic

• For example,

se(p) =

r
p(1 − p)

n

• As presented before, we may be interested in

se
„

log

„
p

1 − p

««

• That is, the standard error of the logit (p)

• Since p and 1 − p are statistically dependent, this computation can be deceptively
difficult
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Delta Method

• The delta method is a useful method to derive the asymptotic variance of a test statistic

• Let f(θ) be a function of a statistic

• Then, according to the delta method, the standard error of f(θ) is

se (f(θ)) =

˛̨
˛̨ d f(θ)

dθ

˛̨
˛̨ se(θ)
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Example - Sample logit

• Consider the following function of the binomial parameter

log

„
p

1 − p

«
= log(p) − log(1 − p)

• Once again p and 1 − p are statistically dependent, so the “variance of the sum is not
the sum of the variances”

• We will apply the delta method. To do so we need to calculate

d
d p

[log(p) − log(1 − p)] = 1
p
− −1

1−p

= 1
p(1−p)

• Therefore,

se
“
log( p

1−p
)
”

=
˛̨
˛ 1

p(1−p)

˛̨
˛

q
p(1−p)

n

= 1√
np(1−p)
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Multivariate extension of the delta method

• Suppose, that θ = f(p11, p12, p21, p22) where pij is defined as below

Column
1 2

Row 1 p11 p12 p1·

2 p21 p22 p2·

p·1 p·2 N = n··

• We want to derive the variance of

θ = OR =
p11p22

p12p21

• The multivariable version of the delta method is

Var
“

bθ
”
≈ ∇f(p11, p12, p21, p22) · Cov(p11, p12, p21, p22) · ∇f(p11, p12, p21, p22)T

• Where ∇ is the gradient vector. That is

∇f(p11, p12, p21, p22) =

„
∂f

∂p11
, . . . ,

∂f

∂p22

«
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Example - Variance of log odds ratio

• We want to estimate

V ar(log(OR)) = V ar

»
log

„
p11p22

p12p21

«–

• Let the function f be

f = (log p11 − log p12 − log p21 + log p22)

• Since these are not independent, we need to use the delta method

• Note that ∇f is

∇f =

„
1

p11
,
−1

p12
,
−1

p21
,

1

p22

«
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Variance Covariance Matrix

• The variance covariance matrix for a multinomial distribution with c = 4 categories

Σ =
1

n

2
6664

p11(1 − p11) −p12p11 −p21p11 −p22p11

−p11p12 p12(1 − p12) −p21p12 −p22p12

−p11p21 −p12p21 p21(1 − p21) −p22p21

−p11p22 −p12p22 −p21p22 p22(1 − p22)

3
7775

• Then ∇fΣ equals

∇fΣ =
“

1
p11

, −1
p12

, −1
p21

, 1
p22

”
×

n−1

2
6664

p11(1 − p11) −p12p11 −p21p11 −p22p11

−p11p12 p12(1 − p12) −p21p12 −p22p12

−p11p21 −p12p21 p21(1 − p21) −p22p21

−p11p22 −p12p22 −p21p22 p22(1 − p22)

3
7775

= n−1 [(1 − p11 + p11 + p11 − p11), (−p12 − (1 − p12) + p12 − p12), . . .]

= n−1 [1,−1,−1, 1]

• We now need (∇fΣ) ×∇fT
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• (∇fΣ) ×∇fT equals

= n−1 [1,−1,−1, 1] ×

2
66664

1
p11

− 1
p12

− 1
p21

1
p22

3
77775

= n−1
h

1
p11

+ 1
p12

+ 1
p21

+ 1
p22

i

• Thus the variance of the log odds ratio is approximately

̂V ar(log(OR)) =
1

n

„
1

p11
+

1

p12
+

1

p21
+

1

p22

«

• substituting the MLEs for cpij = nij/n yields

̂V ar(log(OR)) =
1

n11
+

1

n12
+

1

n21
+

1

n22

according to the delta method
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• What about the variance of the odds ratio (instead of the log-odds)?

• We want the

V ar
“

bθ
”

• where θ = OR = p11p22
p12p21

• We could use the delta method to estimate this variance, but give it a try

• The partials in the gradient vector are rather unwieldily for matrix multiplication by hand

• So what do we do?

• We rely on another calculus “trick”

• That is, we will use the Taylor’s approximation of a function
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• Suppose you know E(X) = µ and V ar(X) = σ2

• Let Y = g(X) where g has the first two derivatives defined.

• That is, g′ and g′′ exist.

• Then, a second order Taylor Polynomial centered at µ is

g(X) ≈ g(µ) + g′(µ)(X − µ) +
1

2
g′′(µ)(X − µ)2

• Then

E(Y ) = E(g(X)) ≈ E(g(µ)) + E(g′(µ)(X − µ) + E( 1
2
g′′(µ)(X − µ)2

= g(µ) + g′(µ)(µ − µ) + 1
2
g′′(µ)E(X − µ)2

= g(µ) + 1
2
g′′(µ)σ2

• A first order polynomial would yield

Y = g(X) ≈ g(µ) + g′(µ)(X − µ)

• We will use the zero order approximation for the variance estimation
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V ar(Y ) = V ar(g(X))

= E
h
(g(x) − E(g(x)))2

i

≈ E
h
(g(µ) + g′(µ)(X − µ) − g(µ))2

i

= [g′(µ)]2 E
ˆ
(X − µ)2

˜

= [g′(µ)]2 V ar(X)

• Thus, for the variance of the odds ratio, consider the following function of the log-odds
ratio

g(log OR) = exp(log(OR)), X = log(OR)

• Then by the Taylor expansion

V ar(exp(log(OR))) ≈ [OR]2
„

1

n11
+

1

n12
+

1

n21
+

1

n22

«

• since
delog(OR)

d log(OR)
= elog(OR)

• and

elog(OR) = OR

Lecture 4: Association Measures and Variance Estimation – p. 35/35


	Terminology
	Comparing Two Proportions
	Quantifying treatment differences 
	Absolute Measures
	Example NNT
	NNT in details
	NNT
	Movement towards relative measures
	Relative Risk or Risk Ratio
	Log-Relative Risk
	Relative Measures - Odds Ratio
	Additional Examination of OR
	Estimating OR
	Example
	Interpretation
	Properties of OR
	Reciprocals of OR and RR
	Interpretation
	Why the log?
	Relationship of OR to RR
	Treatment Difference
	One sided Alternatives
	Motivation
	Delta Method
	Example - Sample logit
	Multivariate extension of the delta method
	Example - Variance of log odds ratio
	Variance Covariance Matrix

