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Statistical Review

Let Y be a discrete random variable with f(y) = P (Y = y) = py .

Then, the expectation of Y is defined as

E(Y ) =
X

y

yf(y)

Similarly, the Variance of Y is defined as

V ar(Y ) = E[(Y − E(Y ))2]

= E(Y 2) − [E(Y )]2
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Conditional probabilities

• Let A denote the event that a randomly selected individual from the “population” has
heart disease.

• Then, P (A) is the probability of heart disease in the “population”.

• Let B denote the event that a randomly selected individual from the population has a
defining characteristics such as smoking

• Then, P (B) is the probability of smoking in the population

• Denote

P (A|B) =
probability that a randomly selected individual
has characteristic A, given that he has characteristic B

• Then by definition,

P (A|B) =
P (A and B)

P (B)
=

P (AB)

P (B)

provided that P (B) 6= 0

• P (A|B) could be interpreted as the probability of that a smoker has heart disease
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Associations

• The two characteristics, A and B are associated if

P (A|B) 6= P (A)

• Or, in the context of our example–the rate of heart disease depends on smoking status

• If P (A|B) = P (A) then A and B are said to be independent
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Bayes’ theorem

• Note that

P (A|B) =
P (AB)

P (B)

and

P (B|A) =
P (BA)

P (A)

• So
P (A|B)P (B) = P (B|A)P (A)

• and

P (B|A) =
P (A|B)P (B)

P (A)

• which is known as Bayes’ theorem
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Law of Total Probability

• Suppose event B is made up of k mutually exclusive and exhaustive events/strata,
identified by B1, B2, . . . Bk

• If event A occurs at all, it must occur along with one (and only one) of the k exhaustive
categories of B.

• Since B1, B2, . . . Bk are mutually exclusive

P (A) = P [(A and B1) or (A and B2) or . . . (A and Bk)]

= P (AB1) + P (AB2) + . . . + P (ABk)

=
kP

i=1
P (A|Bi)P (Bi)

• This is known as the Law of Total Probability

• A special case when k = 2 is

P (A) = P (A|B)P (B) + P (A|B′)P (B′)

where B′ is read “not B” – also view this as a weighted average
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Application to screening tests

• A frequent application of Bayes’ theorem is in evaluating the performance of a
diagnostic test used to screen for diseases

• Let D+ be the event that a person does have the disease;

• D− be the event that a person does NOT have the disease;

• T+ be the event that a person has a POSITIVE test; and

• T− be the event that a person has a NEGATIVE test

• There are 4 quantities of interest:

1. Sensitivity

2. Specificity

3. Positive Predictive Value (PPV)

4. Negative Predictive Value (NPV)
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Sensitivity and Specificity

• Sensitivity is defined as the probability a test is positive given disease

Sensitivity = P (T+|D+)

• Specificity is defined as the probability of a test being negative given the absence of
disease

Specificity = P (T−|D−)

• In practice, you want to know disease status given a test result

Lecture 01: Introduction – p. 8/42



PPV and NPV

• PPV is defined as the proportion of people with a positive test result that actually have
the disease, which is P (D+|T+)

• By Bayes’ theorem,

PPV = P (D+|T+) =
P (T+|D+)P (D+)

P (T+)

• NPV is defined as the proportion of people among those with a negative test who truly
do not have the disease (P (D−|T−))

• Which by Bayes’ theorem is

NPV = P (D−|T−)

=
P (T−|D−)·P (D−)

P (T−)

=
P (T−|D−)·(1−P (D+))

1−P (T+)
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As a function of disease prevalence

• For both PPV and NPV, the disease prevalence (P (D+)) influences the value of the
screening test.

• Consider the following data

Test result
Disease status Positive Negative Total

Present 950 50 1000
Absent 10 990 1000

• Sensitivity and Specificity for this test are

Sen = P (T+|D+) = 950/1000 = 0.95

and
Spec = P (T−|D−) = 990/1000 = 0.99

• However, the real question is what is the probability that an individual has the disease
given a positive test result.
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• With some easy algebra (substituting definitions into the previous equations), it can be
shown that

PPV =
Sens · Π

Sens · Π + (1 − Spec)(1 − Π)

• and

NPV =
Spec · (1 − Π)

Spec · (1 − Π) + (1 − Sens) · Π

where Π is the disease prevalence (P (D+))

• Thus, the PPV and NPV for rare to common disease could be calculated as follows:

Π PPV NPV

1/1,000,000 0.0001 1.0
1/500 0.16 0.99990
1/100 0.49 0.99949
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Interpretation?

• For a rare disease that affects only 1 in a million,

1. A negative test result almost guarantees the individual is free from disease
(NOTE: this is a different conclusion of a 99% specificity)

2. A positive test result still only indicates that you have a probability of 0.0001 of
having the disease (still unlikely–which is why most screening tests indicate that
“additional verification may be necessary”)

• However, if the disease is common (say 1 in 100 have it)

1. A negative test result would correctly classify 9995 out of 10,000 as negative, but
5 of 10,000 would be wrongly classified (i.e., they are truly positive and could go
untreated)

2. However, of 100 people that do have a positive test, only 49 would actually have
the disease (51 would be wrongly screened)

• Does the test “work”

• It “depends”
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Application to Pregnancy Tests

• Most home pregnancy tests claims to be “over 99% accurate”

• By accurate, the manufactures mean that 99% of samples are “correctly” classified
(i.e., pregnant mothers have a positive test, non-pregnant mothers have a negative
test)

• This measure is flawed in that it is highly dependent on the number of cases (i.e.,
pregnant mothers) and controls (i.e., non-pregnant mothers) – FYI: we’ll revisit this
concept again in future lectures

• However, for sake of illustration, lets consider a sample of 250 pregnant mothers and
250 non-pregnant mothers
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Example Data–Based on at home pregnancy tests

Suppose we have the following data observed in a clinical trial:

Truth

Pregnant Not Pregnant

Test + N++ b

Test - a N−−

250 250 500

We know that we have 99% accuracy (because the manufactures tell us so), we have a
constraint

N++ + N−−

500
≥ 0.99

so
N++ + N−− ≥ 495

and for illustrative purposes, let a = 3 and b = 2 so that the following table results.
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Truth

Pregnant Not Pregnant

Test + 247 2 249

Test - 3 248 251

250 250 500

Then
Sens = P (T+|D+) = 247/250 = 0.988

and
Spec = P (T−|D−) = 248/250 = 0.992

Using these values and simplifying the previous equations for PPV and NPV,

PPV =
0.988Π

0.980Π + 0.008

NPV =
0.992 − 0.992Π

0.992 − 0.98Π

where Π is again the “disease rate” (or in this case, the probability of being pregnant)
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Π PPV NPV

0.001 0.110022 0.999988
0.01 0.555056 0.999878

0.1 0.932075 0.998658
0.5 0.991968 0.988048

• Here, the “population” at risk is those females, of childbearing age, who engaged in
sexual activity during the previous menstrual cycle, and are at least 2 days late in the
new cycle.

• The success rate of birth control may be in the range of 99%.

• How do you feel about the marketing claim that the product is “over 99% accurate”?
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Different Case-Control Ratio

Truth

Pregnant Not Pregnant

Test + 397 2 399

Test - 3 98 101

400 100 500

Then
Sens = P (T+|D+) = 397/400 = 0.9925

and
Spec = P (T−|D−) = 98/100 = 0.98

*Note: Sensitivity is now higher and specificity is lower than previously assumed

Π PPV NPV

0.001 0.047324 0.999992
0.01 0.333894 0.999923

0.1 0.846482 0.99915
0.5 0.980247 0.992405
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What are categorical data

• What are categorical data?

• Agresti’s answer: a variable with a measurement scale consisting of a set of categories

• In this class, we will examine categorical variables as an outcome (ie., dependent
variable) and as a predictor (ie., covariate, independent variable)
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Quantitative vs. Qualitative Variable Distinctions

Qualitative Variables: Distinct categories differ in quality, not in quantity

Quantitative Variables: Distinct levels have differing amounts of the characteristic of interest.

Clearly, a qualitative variable is synonymous with "nominal" (black, white, green, blue). Also,
an interval variable is clearly quantitative (weight in pounds).

However, ordinal variables are a hybrid of both a quantitative and qualitative features. For
example, "small, medium and large" can be viewed as a quantitative variable.

At this point, the utility in the variable descriptions may appear unnecessary. However, as the
course progresses, the statistical methods presented will be appropriate for a specific
classification of data.
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Core Discrete Distributions for Categorical Data Analysis

There are three core discrete distributions for categorical data analysis

1. Binomial (with the related Bernoulli distribution)

2. Multinomial

3. Poisson

We will explore each of these in more detail.
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Bernoulli Trials

Consider the following,

• n independent patients are enrolled in a single arm (only one treatment) oncology
study.

• The outcome of interest is whether or not the experimental treatment can shrink the
tumor.

• Then, the outcome for patient i is

Yi =

(
1 if new treatment shrinks tumor (success)
0 if new treatment does not shrinks tumor (failure)

,

i = 1, ..., n
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Each Yi is assumed to be independently, identically distributed as a Bernoulli random
variables with the probability of success as

P (Yi = 1) = p

and the probability of failure is
P (Yi = 0) = 1 − p

Then, the probability function is Bernoulli

P (Yi = y) = py(1 − p)1−y for y = 0, 1

and is denoted by
Yi ∼ Bern(p)
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Properties of Bernoulli

• MEAN

E(Yi) = 0 · P (Yi = 0) + 1 · P (Yi = 1)

= 0(1 − p) + 1p

= p

• VARIANCE

V ar(Yi) = E(Y 2
i ) − [E(Yi)]

2

= E(Yi) − [E(Yi)]
2 ; since Y 2

i = Yi

= E(Yi)[1 − E(Yi)]

= p(1 − p)
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Binomial Distribution

Let Y be defined as

Y =
nX

i=1

Yi,

where n is the number of bernoulli trials. We will use Y (the number of successes) to form
test statistics and confidence intervals for p, the probability of success.

Example 2,
Suppose you take a sample of n independent biostatistics professors to determine how
many of them are nerds (or geeks).

We want to estimate the probability of being a nerd given you are a biostatistics professor.
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What is the distribution of the number of successes,

Y =
nX

i=1

Yi,

resulting from n identically distributed, independent trials with

Yi =

(
1 if professor i is a nerd (success)
0 if professor i is not a nerd (failure)

.

and
P (Yi = 1) = p; P (Yi = 0) = (1 − p)

for all i = 1, ..., n.
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The probability function can be shown to be binomial:

P (Y = y) =

 
n

y

!
py(1 − p)n−y =

n!

y!(n − y)!
py(1 − p)n−y,

where
y = 0, 1, 2, ..., n

and
the number  

n

y

!
=

n!

(n − y)!y!

is the number of ways of partitioning n objects into two groups; one group of size y, and the
other of size (n − y).
The distribution is denoted by

Y ∼ Bin(n, p)
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Properties of the Binomial

• MEAN

E(Y ) = E
`Pn

i=1 Yi

´

=
Pn

i=1 E(Yi)

=
Pn

i=1 p

= np

(Recall the expectation of a sum is the sum of the expectations)

• VARIANCE

V ar(Y ) = V ar
`Pn

i=1 Yi

´

=
Pn

i=1 V ar(Yi)

=
Pn

i=1 p(1 − p)

= np(1 − p)

(Variance of a sum is the sum of the variances if observations are independent)
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Multinomial

Often, a categorical may have more than one outcome of interest. Recall the previous
oncology trial where Yi was defined as

Yi =

(
1 if new treatment shrinks tumor (success)
0 if new treatment does not shrinks tumor (failure)

However, sometimes is may be more beneficial to describe the outcome in terms of

Yi =

8
><
>:

1 Tumor progresses in size
2 Tumor remains as is
3 Tumor decreases in size
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Multinomial

yij is the realization of Yij . Let yij = 1 if subject i has outcome j and yij = 0 else. Then

yi = (yi1, yi2, · · · , yic)

represents a multinomial trial, with
P

j yij = 1 and c representing the number of potential

levels of Y .

For each trial, let πj = P (Yij = 1) denote the probability of outcome in category j and
nj =

P
i yij denote the number of trials having outcome in category j. The counts

(n1, n2, · · · , nc) have the multinomial distribution.

P (n1, n2, · · · , nc−1) =

„
n!

n1!n2! · · ·nc!

«
πn1

1 πn2

2 · · ·πnc
c

This is c − 1 dimensional because nc = n − (n1 + n2 + . . . + nc−1) and
πc = 1 − (π1 + π2 + . . . + πc−1)
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Special Case of a Multinomial

When c = 2, then there is Binomial distribution

P (n1) =

„
n!

n1!n2!

«
πn1

1 πn2

2

Due to the constraints
P

c nc = n and
P

c π = 1, n2 = n − n1 and π2 = 1 − π1.

Therefore,

P (n1) =

„
n!

n1!(n − n1!)

«
πn1

1 (1 − π1)n−n1

Note: For most of the class, I will use p for probability, Agresti tends to use π
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Poisson

Sometimes, count data does not arrive from a fixed number of trials. For example,
Let Y = number of babies born at MUSC in a given week.

Y does not have a predefined maximum and a key feature of the Poisson distribution is that
the variance equals its mean.

The probability that Y = 0, 1, 2, · · · is written as

P (Y = y) =
e−µµy

y!

where µ = E(Y ) = V ar(Y ).
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Proof of Expectation

E[Y ] =
∞P

i=0

ie−µµi

i!

= 0·e−µ

0!
+

∞P
i=1

ie−µµi

i!
See Note 1

= 0 + µe−µ
∞P

i=1

µi−1

(i−1)!

= µe−µ
∞P

j=0

µj

j!
See Note 2

= µ See Note 3

Notes:

1. 0! = 1 and we separated the 1st term (i=0) of the summation out

2. Let j = i − 1, then if i = 1, . . . ,∞, j = 0, . . . ,∞

3. Since
∞P

j=0

µj

j!
= eµ by McLaurin expansion of ex

Try finding the variance of the Poisson
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Likelihood-based large-sample inference

There are three primary likelihood-based methods for statistical inference.

• Wald Test

• Likelihood Ratio Test

• Score Test

They are called the Holy Trinity of Tests. All three methods exploit the large-sample normality
of ML estimators.

But first, lets review what a likelihood is.
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Maximum Likelihood Estimation (MLE)

The purpose of MLE is to choose, as estimates, those values of the parameters, Θ, that
maximize the likelihood function

L(Θ|y1, y2, ..., yn),

where

L(Θ|y1, y2, ..., yn) = f(y1)f(y2) · · · f(yn)

=
Qn

i=1 f(yi)

The maximum likelihood estimator of L(Θ) is the function bΘ that produces

L(bΘ|y1, y2, ..., yn) > L(Θ|y1, y2, ..., yn)∀Θ ∈ Ω

That is, given an observed sample and a specified distribution, bΘ is the value that maximizes

the likelihood (or produces the largest probability of occurrence).
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MLE Continued

Recall from Calculus, the maximum value for a function occurs when the following conditions
hold

1. The derivative of the function equals zero

2. The second derivative is negative

3. The value of the likelihood at the "ends" (boundaries of the parameter space) is less

than L(bΘ)

Since log(·) is a monotonic function, the value that maximizes

l(Θ|y1, y2, ..., yn) = log(L(Θ|y1, y2, ..., yn))

also maximizes L(Θ|y1, y2, ..., yn).
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Example MLE

Let y1, y2, . . . , yn be an independent, identically distributed random sample with the
P (Y = 1) = p and the P (Y = 0) = (1 − p). We want to find the MLE of p.

The Likelihood function of p, given the data is written as

L(p) =
Qn

i=1 pyi (1 − p)1−yi

= p
Pn

i=1 yi(1 − p)n−
Pn

i=1 yi

and the

l(p) = log(L(p))

= log
ˆ
p

P

yi (1 − p)n−
P

yi
˜

=
P

yi · log(p) + (n −
P

yi) · log(1 − p)

Then

d l(p)
dp

=
Pn

i=1 yi ·
1
p

+ (n −
Pn

i=1 yi) ·
−1
1−p
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Example MLE continued

Setting d l(p)
dp

= 0 and solving for p yields

(1 − p)
nX

i=1

yi = p(n −
nX

i=1

yi) =⇒ bp =
1

n

nX

i=1

yi

General Likelihood Terminology

• Kernel: The part of the likelihood function involving the parameters.

• Information Matrix: The inverse of the cov(bβ) with the (j, k) element equaling

−E

„
∂2L(β)

∂βj∂βk

«

Note: Agresti uses l(.) to indicate the regular likelihood function and L(.) to represent the
log-likelihood. I’ll use the more traditional notation of l(.) to represent the log.
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Summary of general statistical inference

• We will make distinctions of the NULL and NON-NULL standard errors

• A non-null standard error is based on what you assume before you collect the data.
I.e., in H0, you may assumed X ∼ N(µ, σ2). Then, the non-null standard error would
be based on σ2

• However, when you take a random sample, you observe a mean and estimate the
standard error of the mean

• This estimate could be (and is commonly) used in hypothesis testing

• Here we want to test the null hypothesis H0 : β = β0 vs some alternative hypothesis
Ha.
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Wald Test

With the nonnull standard error (SE) of bβ, the test statistic

z = (bβ − β0)/SE

and its related transformation, z2,

have a N(0, 1) distribution and χ2 distribution with 1 degrees of freedom, respectively.

z2 = (bβ − β0)2/SE2

= (bβ − β0)′[V ar(bβ)]−1(bβ − β0)

or in vector notation for more than one parameter

W = (
b~β − ~β0)′[cov(bβ)]−1(

b~β − ~β0)

Note: This is the typically hypothesis testing and is know as a WALD Test
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Score Test

The score function, u(β), is written as

u(β) =
∂l(β)

∂β

Let u(β0) be the score value evaluated β0 and ı(β0) = −E[∂2l(β)/∂β2]2 evaluated at β0

(i.e., the information).

u(β0) tends to increase in value as bβ is farther from β0.

The statistic
[u(β0)]2

ı(β0)
=

[∂l(β)/∂β0]2

−E[∂2l(β)/∂β2
0 ]

is distributed approximately χ2 with 1 df and is known as a SCORE TEST.
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Likelihood Ratio Test

Let L0 be the likelihood value obtained by substituting in the null hypothesis value.
Let L1 be the maximum likelihood value obtained from the data.

If L1 is close to L0, then you would expect that the null hypothesis would be true.

Note: L1 > L0 since bβ and β0 come from the same parameter space and bβ was chosen as
the maximum.

Let Λ = L0

L1
. Then −2logΛ is distributed approximately as a χ2 with the degrees of freedom

equal the difference in the dimensions of the parameter spaces under H0
S

Ha and under
H0.

The likelihood-ratio test statistics equals
−2logΛ = −2(l0 − l1)
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Comparison of the 3 methods

• All three methods are likelihood based

• The Wald test uses the NONNULL standard error

• The Score test uses the NULL standard error (information evaluated at the null)

• The likelihood ratio test combines information from the null and observed likelihoods

• For small to medium samples, the likelihood ratio test is better

In general, most of what we will discuss will be the likelihood ratio based tests.
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