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SUMMARY 

Random effects logistic regression models are often used to model clustered binary 
response data. Regression parameters in these models have a conditional, subject-specific 
interpretation in that they quantify regression effects for each cluster. Very often, the 
logistic functional shape conditional on the random effects does not carry over to the 
marginal scale. Thus, parameters in these models usually do not have an explicit marginal, 
population-averaged interpretation. We study a bridge distribution function for the 
random effect in the random intercept logistic regression model. Under this distributional 
assumption, the marginal functional shape is still of logistic form, and thus regression 
parameters have an explicit marginal interpretation. The main advantage of this approach 
is that likelihood inference can be obtained for either marginal or conditional regression 
inference within a single model framework. The generality of the results and some proper- 
ties of the bridge distribution functions are discussed. An example is used for illustration. 

Some key words: Bridge distribution function; Clustered data; Gaussian-Hermite quadrature; Marginal model; 
Random effects model. 

1. INTRODUCTION 

Examples of clustered data include repeated measurements in longitudinal study, paired 
observations on both eyes in ophthalmology research and family data in genetics study. 
It is well known that observations within a cluster tend to exhibit intracluster correlation, 
which has to be appropriately considered for valid inferences. 

The random intercept logistic regression model is commonly used to analyse clustered 
binary data. It is a natural extension of the traditional logistic regression model in which 
the random intercept is allowed to vary across clusters according to a distribution. The 
model has the following form: 

w w 

where the binary Y~, is the observation on the jth unit for the ith cluster 
(i =1, 2,..., m, j=1, 2,. .., ni), Xzj is a p xl1 covariate vector and o is a p 1 vector of 
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regression parameters. The bi are cluster-specific random effects that are independent and 
identically distributed as G given Xi, where Xi contains all covariates for cluster i. Within 
each cluster, observations Yij are independent conditional on Xi and bi. Since the intercept 
term can be absorbed into c4Xij, we assume that E(b 

The parameter as in model (1.1) measures the change in the conditional logit of the 
probability of response with the covariate Xij for units in each of the underlying risk 
groups described by bi (Neuhaus et al., 1991). Note that, in the marginal scale, 

pry.j-11 
12 

which is usually not of logistic form. Thus, the parameter as usually does not have an 
explicit marginal, population-averaged interpretation. 

On the other hand, for a marginally specified assessment, the marginal distribution 
(1"2) 

may be modelled directly by 

logit (1"3) 

where 
ap 

measures a marginal regression effect associated with the covariate 
Xij. 

The 
intracluster correlation is commonly modelled by adopting a 'working' covariance 
structure and parameter estimation can be carried out by solving generalised estimating 
equations (Liang & Zeger, 1986). 

The relationships of regression parameters between conditional and marginal regression 
models have been studied by several authors (Neuhaus et al., 1991; Zeger et al., 1988; 
Chao et 

al., 1997). It was noted that incorporating a random effect in a conditional model 

usually induces a very complicated interaction between covariates in the marginal mean. 
It was observed that parameter estimators in the random intercept logistic regression 
models are relatively robust with respect to different distributional assumptions (Neuhaus 
et al., 1992; Heagerty & Kurland, 2001). 

In this paper, we study a special distribution function for the random intercept logistic 
regression model. Under this distributional assumption, the marginal functional shape is 
still logistic and regression parameters have an explicit marginal interpretation. In s 2 this 

special distribution is identified and some of its properties are discussed. The generality 
of the results is investigated in s 3. Parameter estimation and interpretation are given 
in s 4. In s 5 an example is presented for illustration, followed by a discussion in s 6. 

2. DERIVATION AND PROPERTIES OF THE BRIDGE FUNCTION 

Consider the random intercept logistic model 
(1"1) 

but with a general inverse link 
function H(.). For ease of discussion, we first assume the same random effects distribution 
across clusters, that is G(biIXi)':=G(bi). We relax this condition to allow bi to depend on 

Xi later. It is of interest whether or not there exists a distribution G(b) such that the 
conditional functional shape is retained in the marginal scale, i.e. 

TH(b 
2 

where H is assumed to be monotone, increasing and twice differentiable with finite 
H (_ cC), and k and b are unknown parameters. It is easy to see that k = 0 when H is 
the cumulative distribution function of a symmetric distribution. This is not necessarily 
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true for a general inverse link H. For notational convenience, the subscripts i and j are 
suppressed. 

One can see that equation 
(2.1) 

holds for the degenerate distribution G(b). In this 
scenario, no heterogeneity exists across clusters and the random intercept model is equival- 
ent to a fixed-effects marginal model with independent observations within each cluster. 

Let q= scX. For any nondegenerate G(b), differentiation of (2.1) with respect to q yields 

T (2"2) 

where h = H'. Note that the above equation can be written as 

h* 
where g-b is the probability density function of - b and the symbol * indicates the 
convolution operation. 

It is easy to see that h and g-b are nonnegative and integrable. Take Fourier transforms 
of both sides in the above equation, so that 

F-{h*g 
where F represents the Fourier transform operation, defined as 

-F{f(x)} 

Since FI{h * g-b(/)} = Fh(2)Fg-b(2) and F{qoh(k + obq)}(2) = eikI4k9h(2/q0), we obtain 

Fg- 
Denote the right-hand side of the above equation by v(2). For q5 such that v(2) is integrable, 
by the Fourier Inversion Theorem, the probability density function of b is given by 

gb(x) 
(2"3) 

We refer to this function as the bridge density function. It is easy to see that 
Jgb(x) dx = 1 since 2gb(O) = 1. Note that h is nonnegative, so q0 > 0 from (2.2). For q> 1, 
h(/q5)/Yh() does not decrease to zero as I- so it is not integrable. Therefore, in 
this case, gA does not exist unless q5 = 1, in which case gA is degenerate. The rescaling 
parameter / between 0 and 1 is consistent with the effect of attentuation (Zeger et al., 
1988; Neuhaus et al., 1991). 

The result (2-3) is still valid when b depends on the covariate X since X is held fixed 
conditionally in (2.1). However, in this situation, the rescaling parameter becomes a 
function of X, O(X) say. 

For the logit link, H(q) = e'(1 + e")-1 and h(ij) = e'(1 + e")-2. The characteristic 
function of the logistic distribution is yp(t)= 27rt/(e'"t-e- 7t), with yp(0) defined to be 
limt_+o q0t) = 1. The Fourier transform of the function f(x) = sinh(ax)/sinh(nzx) is given by 

sin(a)/{cosh() 
(Selby, 1974, p. 526). By changing variables, we obtain the bridge density function for the 
logit link as 

gb(x)=- 
(2"4) 
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The characteristic function of the above bridge density function is given by 

YPb(t) 
The moments of the bridge density function are obtainable directly from the Taylor 
expansion of Yb(t) at t = 0, namely 

=b 
Thus the mean is -=0 and the variance is O 

Note that, when 0 =4, a simple form of the bridge density function is available: 

1 

We denote the distribution (2-4) by B1(0, q!), where 0 is the mean, ;b is the rescaling 
parameter and the subscript 'T' implies 'logistic'. The distribution is symmetric and has a 
different shape from that of the Gaussian distribution. Figure 1 presents the probability 
density function for B1, Gaussian and logistic distributions each with zero mean and unit 
variance. One can see that 

Bl 
has slightly heavier tails than Gaussian and lighter tails 

than logistic. 

0.8 
Gaussian 
Bridge 
Logistic 

0.6 

0.4 

0.2 

0.0 

2 4 0 -2 -4 
X 

Probability 

density 

function 

Fig. 1. Probability density functions of the Gaussian, logistic and bridge, 
for logistic, distributions each with zero mean and unit variance. 

PROPOSITION 1. The bridge distribution for the logit link has the following properties. 
(i) Function {e OB1O4t) + cos(0b7r)}/sin(q0ir) has the same distribution as the left-truncated 

standard Cauchy distribution defined on x > cos(q7r)/sin(07r) for q5 c-(0, 1). In particular, 
eBi(0'1/2)/2 is distributed as the left-truncated standard Cauchy on x > 0. 

(ii) Distribution BI(O, /0), for 0 c (0, 1), is a scale mixture of symmetric stable distributions. 
In particular, it is a scale mixture of Gaussians. 

(iii) Distribution Kp, has the same distribution as 
Kbea-lB1(Osk) where 

Kb is the Linnik distribution with index parameter 6. 

The proofs can be found in the Appendix. A result similar to (iii) was found by Kotz 
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& Ostrovskii (1996) by using complex contour integration. Here we offer a different proof 
and the relationship between the logistic and its bridge distribution is addressed. 

Under the bridge distributional assumption, the regression parameters in the marginal 
and conditional logistic models are related by 

I 
"5 

In addition, straightfoward calculations show that 

P= (2"6) 
where pr is the intracluster correlation in the binary response scale. 
This relationship, which was obtained by Neuhaus et al. (1991) using a one-step Taylor 
series expansion, holds exactly under the bridge distribution. 

3. GENERALITY OF THE RESULTS 

3"1. Multivariate distribution 
It does not seem straightforward to generalise the bridge distribution of the random 

intercept logistic regression model to multivariate random effect distributions. To see this, 
consider a mixed-effects logistic model 

logit (3.1) 
where Z~j is q x 1 design vector, which may be a subset of the covariate vector X~j, and 
bi is a q x 1 vector of random effects. 

In order to retain the logit shape in the marginal mean, bfZij must follow the bridge 
distribution discussed previously. However, as one can easily verify, the bridge distribution 

BI 
is not closed under linear combination. Thus, even if each component of the random 

vector bi follows the bridge distribution, bfZij does not necessarily follow the same 
distribution. Therefore, a straightforward generalisation to multivariate random effect 
distributions does not seem possible. 

In practice, there can be covariate group-specific heterogeneity. One simple way of 
extending of the bridge distribution to accommodate this scenario is to relate the variance 
of the bridge distribution in 

(1.1) 
to covariates via a link function. For example, the log 

link may be used, so that 

log{12} 
In this situation, the marginal shape remains logistic and the rescaling parameter becomes 
dependent on Zi1, that is Ob(Zij) = (1 + 37r-2eI3zii)_-. 

When the random effects are nested, for example of the form bi + bij, the bridge 
distribution can still be used to preserve marginalisation. To see this, assume that 
b1sI(bi, Then the marginal mean is given by 

fH(bi3H- 
where H(rl)=e"/(1 If we assume that b1iX~'..'-1 not B/(0,ftb2), then the 
marginal mean is given by H(b~2T However, the marginalisation does not hold if 
one simply assumes that bi1j(bi, and b1iXS1 The key is that 4b is 
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not a scale parameter in the bridge distribution and B, is not closed under linear 
combination. 

3.2. Other link functions 
The idea of bridge distribution is easily generalised to other link functions. When the 

link is the probit, it is straightforward to verify that its bridge distribution is Gaussian. 
Mixed-effects probit regression models with Gaussian random effects have been discussed 
by many authors, such as Chao et al. (1997) and Heagerty & Zeger (2000). The rescaling 
parameter in this case is given by 

1 

where cr2 is the variance of the bridge distribution N(O, b). 
It is worth noting that, for the probit link, a simple generalisation of the bridge distri- 

bution to multivariate bridge distributions is available since the Gaussian family is closed 
under linear combination. Furthermore, it is straightforward to verify that such a property 
still holds when the link is the inverse cumulative distribution function of a positive stable 
distribution. 

Another commonly-used link function is the complementary log-log, with inverse 
function 

function 

In this case, h(q)=- 
e-" and straightforward calculations show that Fh() )= F(1 

where F is the gamma function. If we follow previous arguments, the bridge density 
function is given by 

A 

It can be shown that, for 0 <q0 < 1, F(1 - iF(1 - i is a characteristic function of a 
random variable and is therefore integrable. Therefore, the above bridge density function 
gb(x) exists. In a survival context, survival and hazard functions are closely related to the 
complementary log-log relationship. Hougaard (1986) showed that the common con- 
ditional survival distribution with a random effect, or frailty, is retained marginally in 
Weibull models when the random effect follows the positive stable distributions. Thus, the 
bridge distribution for the complementary log-log link is the log-positive stable distri- 
bution. It is straightforward to verify that the rescaling parameter in this case is given by 

1 

where a2 is the variance of the bridge distribution. 
Other link functions exist for which the bridge density functions have explicit analytical 

forms. For example, when H is the cumulative distribution function of the Cauchy distri- 
bution, that is H0j)-= z- {it/2 + arctan0ul)}, .-h(.) - e-i and the corresponding bridge 
distribution is the Cauchy distribution. 

The rescaling parameter / is comparable to the 'attenuation factor' in Neuhaus & Jewell 
(1993) for the noted links and the 'bias factor' in Chao et al. (1997) for the probit link. 
For a general link function, direct evaluation of the bridge density function (2-3) seems 



Binary random intercept models 771 

difficult and explicit analytical forms for the bridge density function and 0b may not be 
available. 

4. ESTIMATION AND INTERPRETATION 

Parameter estimation for the random intercept logistic model with the bridge distri- 
bution can be carried out by evaluating the marginal likelihood function. Assume that we 
observe the dataset 

= 

Let Yi-=(Yil Yi2,... Yi)T and xi-= (Xil, The joint probability function for 
the ith cluster is given by 

Y 

j=1 
4.1 

where GB, is the bridge distribution and 0 is a vector containing all the unknown 
parameters in GB1 The marginal likelihood function becomes 

m 

The maximum likelihood estimates of the parameter vector (oc, are obtained by maxi- 
mising the likelihood function Y (as, The variance-covariance matrix for the parameter 
estimators is estimated by evaluating the inverse Hessian matrix at the maximum likeli- 
hood estimates (a, 

The integral over the random effect bi in (4.1) is commonly evaluated using Gaussian- 
Hermite quadrature approximation when the random effects are Gaussian (Hedeker & 
Gibbons, 1994; Pinheiro & Bates, 1995). Computational details are given in the Appendix. 

The parameter a, in (1.1) has a conditional, subject-specific interpretation (Zeger et al., 
1988; Neuhaus et al., 1991). As one can see, under the bridge distribution, the parameter 
oc also has a marginal, population-averaged interpretation at a special scale O)(X) that 
characterises the amount of heterogeneity across clusters. When the magnitude of the 
heterogeneity is larger, the marginal covariate effects shrink towards zero. 

When the rescaling parameter 4) is independent of X, direct assessment of marginal 
effects cp can be made by replacing as in (1-1) by 4-) The model then becomes 

logit (4.2) 
where bi IXi, BI(O, and logit {pr(Yij = 1 IXji)} = cTXij marginally. 

A prediction of pr(Yi1 = l lb., X~j) for the jth unit in the ith cluster can be obtained by 
evaluating its value at (.s, where .s is the maximum likelihood estimate and bi is the 
empirical Bayes estimate of bi (Carlin & Louis, 2000, pp. 57-78). 

5. AN EXAMPLE 

A longitudinal dataset from Stokes et al. (2000, p. 461) concerned a clinical trial that 
was designed to compare two treatments for a respiratory illness. There were two centres 
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and a total of 111 patients. Patients in each of the two centres were randomly assigned 
to the active treatment or a placebo. The outcome of interest is 'respiratory status', Y, 
categorised as 0 (poor) or 1 (good). Measurements were taken at four different visits. 
Potential explanatory variables included a centre indicator X1, equal to 0 for centre A 
and 1 for centre B, a sex indicator X2, 0 for male and 1 for female, age in years X3, and 
baseline status X4, equal to 0 for poor and 1 for good. There were 54 patients in the active 
group and 57 patients in the placebo group. 

We fitted the random intercept logistic model (1"1) to the data assuming the bridge or 
Gaussian distribution for the random effect. The model is 

logit 

where i = 1, 2,..., 111,1j = 1, 2, 3, 4 and the bi are distributed as BI or Gaussian with mean 
0 and variance rb2. The resulting parameter estimates are presented in Table 1. The esti- 
mates based on the two models are very similar. The estimated conditional log odds ratios 
measuring the treatment effect are both highly significant, as are the estimated standard 
deviations of the random effect, indicating considerable heterogeneity across patients. The 
rescaling parameter q0 for the model with the bridge distribution is estimated as 0621, so 
that in the marginal scale the log odds ratio measuring the marginal treatment effect is 
approximately 2.105 x 0.621 = 1.307. 

Table 1: Respiratory illness data. Estimates of conditional 
regression parameters and their standard errors, SE, for random 
intercept logistic regression models with the bridge distribution and 

the Gaussian distribution 

Gaussian Bridge 
Covariate Estimate SE p-value Estimate SE p-value 

0.560 
0.553 
0.021 
0.688 
0.553 
0.578 
0.376 

0.547 
0.545 
0.020 
0.673 
0.546 
0.581 
0.326 

-2.421 
2.105 

-0.029 
0.389 
0.818 
2.883 
2.290 
0.621 

<0.001 
<0.001 

0.161 
0.573 
0.142 

<0-001 
<0.001 

-2.380 
2.028 

0.027 
0.244 
0.980 
2.921 
1.985 

<0.001 
<0-001 

0.186 
0.717 
0.075 

<0.001 
<0.001 

Intercept 
Treatment 
Age 
Sex 
Centre 
Baseline 
ab 
0 

We also fitted the marginally specified random intercept logistic model (4.2) to assess 
the marginal effect directly. For comparison, a marginal generalised estimating equation 
model with the exchangeable correlation structure was also fitted. The results are presented 
in Table 2. The parameter estimates and standard errors of the marginal effects shrink 
towards zero when compared with those from the conditional models. The Wald tests of 
regression effects appear to be consistent between the marginal and conditional models. 
The marginal regression effects from the marginally specified model are very comparable 
to those from the generalised estimating equation model. For the marginally and con- 
ditionally specified random intercept models with the bridge distribution, the estimates of 
the covariate effects approximately satisfy the relationship c.p = 4b0, which is consistent 
with our previous discussion: the rescaling factor ft reflects the magnitude of the difference 
between the conditional and marginal regression effects. 
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Table 2: Respiratory illness data. Estimates of marginal regression 
parameters and their standard errors, SE, for random intercept 
logistic regression models with the bridge distribution and the mar- 
ginal generalised estimating equation, GEE, model with the 
exchangeable correlation structure. Robust standard errors are 

reported for the generalised estimating equation model 

Bridge 
Covariate Estimate SE p-value 

GEE 
Estimate SE p-value 

0.343 
0.347 
0.013 
0.440 
0.353 
0.346 

0.336 
0.335 
0.013 
0.428 
0.341 
0.343 
0.370 

0.327 

<0-001 
<0.001 

0.162 
0.573 
0.139 

<0.001 
<0.001 

-1.480 
1.265 

-0.019 
0.137 
0.650 
1846 

<0-001 
<0.001 

0.148 
0.756 
0.066 

<0.001 

-1.507 
1.309 

-0.018 
0.242 
0.509 
1.793 
2.299 
0.621 

Intercept 
Treatment 
Age 
Sex 
Centre 
Baseline 
ab 
0 or p 

6. DiSCUSSION 

Other approaches have been proposed for estimating regression effects for clustered 
binary data for random effects models. One is to use conditional likelihood to estimate 
the effects of within-cluster covariates; the random effects are eliminated and therefore the 
distribution of the random effects need not be specified (Breslow & Day, 1980, p. 248). 
However, the effects of between-cluster covariate effects cannot be estimated by this 
approach, nor can features of the random effects. Another approach is to model the 
random effects nonparametrically and to estimate the random effects and covariates effects 
jointly (Laird, 1978; Follmann & Lambert, 1989). However, marginal effects cannot be 
assessed in this approach. 

The bridge distribution function has a special functional form and this may limit its 
use in practice. However, it has been observed that regression effects in the random 
intercept logistic models are quite robust to different distributional assumptions for the 
random effect (Neuhaus et al., 1992; Heagerty & Kurland, 2001). In practice, it is often 
unlikely to have enough information to distinguish between different random effects distri- 
butions for a given dataset. The bridge distribution offers a useful tool for conditional 
inference while allowing for meaningful marginal assessments of regression effects. 

ACKNOWLEDGEMENT 

The authors wish to thank the editor and two referees for their constructive comments 
and suggestions. The authors are grateful to Professors W. Dunsmuir, R. C. Pruitt and 
W. Pan for reading an early version of this paper. 

APPENDIX 

Technical details 

Proof of Proposition 1. Part (i) is straightforward. For part (ii), the characteristic function of the 
symmetric stable distribution Sa is qPa(t) --e-Itla/2 (0 Note that, when a = 2, Sa is the 
standard Gaussian. Consider a class of distributions defined by La = {X It can 
be seen that X e La if and only if its characteristic function Qx(t) is of the form (Ox(t)= 
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0o e ItvI" 
dGv(v), where Gv is the distribution of a random variable V. By the result of Keilson & 

Steutel (1972), it is easy to verify that the class La consists of all random variables whose character- 
istic function s is completely monotone in It Ia, that is (p( is completely monotone on (0, oo). 
Note that any function that is completely monotone in x is also completely monotone in xP, for 
p > 1. Thus La c-L,2 for al < a2. Also, La is closed under mixing and convolution. Since the 
characteristic function of BI(0, is oB,(t)= sinh(ict)/{q$ sinh(7ct/4)}, 0b c-(0, 1), it follows that 

ftB,(ItI = sinh(7rItIl/a)/{I for a e (0, 2]. Direct verification that ft, (ItI is com- 
pletely monotone on (0, oo) yields part (ii). For part (iii), the Linnik distribution K6 (Linnik, 1963) 
has characteristic function (0b(t) = (1 for 63c-(0, 2]. It is easy to see that eL//(0) has the 
same distribution as eLI6+Bj(O for 0 e (0, 1), where L is the logistic distribution and BI is the 
bridge distribution. Since the distribution function of eLI("') is F(x) = 1 - I15')-1, for x > 0, 
straightforward calculations yield (11 = I6)- dG(ar), where G(a) is the distri- 
bution of B/1. This proves part (iii). 

Evaluation of maximum likelihood estimates. Denote the target integral in (4.1) by 
Jr(x; b) dG(b Ix), where b follows the bridge distribution. Let b-=D-1'{G(bIx)}% where (F is the 
cumulative distribution function of the standard Gaussian distribution. Then b- N(0, 1). Let 

v(.) = G-'{'F(.)}. Then 

r(x; 
(A.1) 

Evaluation of the integral f r(x; b) dG(b I x) is therefore equivalent to the evaluation of the inte- 

gral f r{x; v(b)} d'D(b Ix) with b - N(0, 1). Thus, the commonly used Gaussian-Hermite quadrature 
method can be readily applied here. 

For the logit link, the cumulative distribution function for the bridge distribution is given by 

I{7re X 

and its inverse is 

1 
F 

If we combine (A.1), (A-2) and (A.3), it is straightforward to evaluate the maximum of the likelihood 
in (4-1) using current computing tools. For the example discussed in s 5, a simple implementation 
of the above algorithm using PROC NLMIXED in SAS (V8.1) is as below. 

proc nimixed data=resp; 
parms centreO=l sexO=O ageO=O baseO=3 trtO=2 mu=-2 sl=2; 
uni = probnorm(b/sl); 
phi = 1.0/sqrt(l + 3/pi/pi*sl*sl) 
B1i = /phi*log(sin(pi*uni*phi) /sin (phi*pi* (l-uni))) 
tmp = mu+centreO*centre+sexO*sex+ageO*age+baseO*base+trtO*trt; 
expeta = exp(Bl + tmp); 
p = expeta/!(1 + expeta); 
model y - binary(p)); 
randomb ~ normal(O,sl*sl) subject~id; 

predict p out=outp; 
run; 
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