X is a r.v. with

\[
F(x) = \begin{cases}
1 - e^{-\lambda x} & x \geq 0 \\
0 & x < 0
\end{cases}
\]

\[
f(x) = \lambda e^{-\lambda x}
\]

\[
\frac{d}{dx} F \rightarrow f
\]

"Random - Nixodyne"\n
\[
P(X = x) = 0 \text{ for } X \text{ in }
\]

\[
F_X(x) = P(X \leq x)
\]

\[
S_X(x) = P(X > x)
\]
\[S_n(x) = \begin{cases} 0 & \text{if } x < X_{(1)} \\ \frac{i}{n} & \text{if } X_{(i)} \leq x < X_{(i+1)} \\ 1 & \text{if } x \geq X_{(n)} \end{cases} \]

\(S_n(x) \) is an estimator of \(F_n(x) \)

"EDF is a step-fn."

"It jumps only at the distinct ordered values." → "Distinct ordered values," → "Height of the jump = \(k \frac{S_n(x)}{n} \) of values tied at \(X_{(j)} \)"
Define $T_n(z) = n \cdot S_n(z)$

$T_n(z) = \text{Total \# of sample values } \leq \text{some specified } z$

Theorem: For any real z, the r.v $T_n(z)$

Define $\delta_i(z) = \{ 1 \text{, if } X_i \leq z \}$

$\text{Indicator function}\tries{\text{for } \delta_i(z)} = E(\delta_i(z)) = \Pr(\text{Event})$
\[E(\delta_i(x)) = \mathbb{P}(X_i \leq x) + 0. \mathbb{P}(X_i > x) \]
\[= \mathbb{P}(X \leq x) \]
\[= F_X(x) \]

See that, \(\delta_1(x), \ldots, \delta_n(x) \) are i.i.d. Bernoulli \((\theta)\)

\[\Theta = \mathbb{P}(\delta_i(x) = 1) = E(\delta_i(x)) \]

\[T_\Theta(x) = n \Sigma \delta_i(x) \]

\(T_\Theta(x) \) is the sum of \(n \) i.i.d. \(\text{Ber}(\theta) \)
\[X_i, \ i = 1(1) \sim N(\mu_i, \sigma_i^2) \]

\[X, \ \iids \sim N(\mu, \sigma^2) \]

& \[X, \ldots, X_n \text{ are i} \]

\[\mu_i = \mu, = \cdot = \mu_n = \mu \]

\[X, \ldots, X_n \sim \text{Bin}(\theta) \]

\[T = \sum X_i \sim \text{Bin}(n, \theta) \]

\[T = \sum \frac{X_i}{\theta} \sim \text{Bin}(n, \theta) \]
\[T_n \sim Bin(n, \theta = F_X(x)) \]

1. \[E(S_n(x)) = F_X(x) \]

\[V_S(S_n(x)) = \frac{F_X(x)(1 - F_X(x))}{n} \]

"We think \(S_n(x) \) should approximate \(F_X(x) \)."
$S_n(x)$ "converges uniformly" to $F_X(x)$ with probability 1.

& this is written as

$$P \left[\lim_{n \to \infty} \sup_{-\infty < x < \infty} |S_n(x) - F_X(x)| = 0 \right] = 1$$

"Gleivenko–Cantelli Theorem"
Converging with prob. 1
"almost sure convergence"
"g.s.e.t. convergence"
"in distribution"

\[F_i \xrightarrow{d} F \quad \text{Excellent!!} \]
No worries
\[
\lim_{n \to \infty} P \left\{ \frac{\sqrt{n} \left(S_n(x) - F_x(x) \right)}{\sqrt{\frac{F_x(x)}{1-F_x(x)}}} \leq \epsilon \right\} \xrightarrow{\epsilon} N(0,1) \\
\text{CLT (for } S_n(x) \text{) = } \Phi(\epsilon)
\]
To find the c.d.f of $X^{(r)}$:

$F_{X^{(r)}}(x) = P(X^{(r)} \leq x)$

$= \sum_{i=r}^{n} \binom{n}{i} \left[F_X(x) \right]^i \left(1 - F_X(x) \right)^{n-i}$
\[n \, S_n(x) \sim \text{Bin}(n, F_X(x)) \]

\(X(n) \leq t\) happens, "iff"

(if & only if) at least \(\gamma\) of the \(X\)'s \(\leq t\).
Then, what is the p.d.f of $X(r)$?

$F_X(x) = f_x(x)$ exists.

$\therefore f_X(x) = \frac{n!}{(r-1)! (n-r)!} \left[F_X(x) \right]^{r-1} \left[1 - F_X(x) \right]^{n-r} \int_{F_X(x)}^{1} f_x(z) dz$

n total pts.
Probability Integral Transform (PIT)

Let X be a r.v. with c.d.f $F_X(x)$

$F_X(\cdot)$ is continuous.

Then, $Y = F_X^{-1}(U) \sim U(0,1)$

$\text{VV FUP} - \text{Result}$.
This means, if \(X_1, X_2, \ldots, X_n \) is a random sample from a population with c.d.f. \(F_X(x) \) then \(F_X(X_1), F_X(X_2), \ldots, F_X(X_n) \) is a random sample from the Uniform distribution.
PIT Proof excluded!!

Ex: Let \(X \sim \text{Exp}(\text{Mean} = 2) \)

\[c.d.f \ of \ X \ is \ F_X(x) = 1 - e^{-\frac{x}{2}} \]

Then by Pitman's Th, the s.v.

\[Y = f_X(x) \sim U(0, 1) \]

\[1 - e^{-\frac{x}{2}} = u \]
Solve for n?

$$X = -2 \cdot \ln (1-u)$$

This gives me a way to generate some $\exp(2)$ r.v.

In R:

```r
u <- runif(0,1)
X.exp <- -2 * log(1-u)  # a random exp(2). r.v.
```
H. W. 1000

1. Generate Exp (Mean = 10) samples using
 (i) P/T Method
 (ii) Using \(\alpha \cdot \exp \)

& compare !!
Uniform(0, 1) \[? \]
Rectangular(a, b) \[\leq \] W
Conservative Tests

We are comparing 2 brands of tires

$H_0: \mu_1 - \mu_2 = 0$, $H_A: \mu_1 - \mu_2 \neq 0$

$t_1 = 23.58$, $s_1 = 3100$

$t_2 = 25.86$, $s_2 = 3600$
\[t - \text{test} : \]
\[t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
\[s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \]

We get \(t = -1.663 \)
We can focus on either a t-table or a z-table.

In R? p-value?

> 2 * pbinom(-1.663, 22) # 0.0963

> 2 * pt(-1.663) # 0.11049 # x

> 2 * pt(1.663) # 2
A conservative test is a test where it doesn't reject the NULL often enough (i.e., a test having a stated level of significance > true level).

It can be determined by simulation.
Set $d = 0.05$; consider 2 tests T_1 & T_2

Do 10000 runs/repetitions

If you get 400 rejections, (T_1)
 You have a Conservative Test T_1.

If you get 600 rejections:
 You have a Non-conservative Test T_2.
 (anti-...