
Comment: 
  Exceedence probabilities in the analysis of disease maps where risk 
anomalies are present  
 
 In the area of cluster or anomaly detection, exceedence probabilities have been used to 
assess hot spot clustering in both space and space-time (S.Richardson et al. 2004; 
Hossain & Lawson  2006; Lawson & Hossain 2008). A variety of Bayesian models for 
disease risk were evaluated in those papers and  it appeared that exceedence probability 
was a useful method both for evaluating models and for detection of areas of ‘unusual’ 
risk . Bayesian modeling has of course many advantages over testing – based methods for 
anomaly detection such as scan statistics (Kulldorff & Nagarwalla 1995; Kulldorff & 
Information Management Services Inc 2002). Bayesian modeling allows incorporation of 
covariates easily, flexible changes to model, and the incorporation of background 
heterogeneity is possible. It would seem therefore that using exceedence probabilities 
might become a panacea, as the computational issues associated with fitting Bayesian 
models via MCMC are much less challenging, especially with packages such as 
WinBUGS and links to R. 
 
However there are a number of issues with such use, that should be stressed:  
The exceedence probability that is usually defined in classic Poisson likelihood models, 
is a s follows: for the level one data model  
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the posterior sampling output from a converged sampler can provide an estimate of 
Pr( )i cθ > . This is usually estimated simply by counting the number of exceedences in 
the posterior sample and dividing by the sample size (G): i.e.  
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can be derived for other forms of risk estimate. Often it is assumed that a guide level for  
lPr( )i cθ >  should be 0.95. Often  assumed to take the value 1. It is sometimes 

advocated that mapped values of 

c
lPr( )i cθ >  can be examined for areas of ‘excess’ risk  

and thus hot spot clusters can be detected.  
 
There are some issues with the use of these probabilities that should be noted: 
 1) there is a trade off between the threshold probability chosen and the threshold level 
that is assumed, i.e. for relative risk iθ  in a small area ( ) :  Pri ( )i cθ α> >    requires the 
assumption of values for c  and α  and these can be traded. Hence it is not clear what 
level should be chosen (as alteration of the other level can compensate). This possible 
equi-finality is somewhat troubling and means that the α  level can be altered. The effect 
detected at different levels of α  with different levels of  could to a degree be different 
and to a degree this is arbitrary. This arbitrariness also means that power to detect effects 
(ROC analysis) could vary depending on the 

c

α  and c  level chosen. It has been shown 



that different forms of risk anomalies can be detected with different thresholds for spatial 
effects (Hossain & Lawson  2006) and spatio-temporal effects (Lawson & Hossain 2008). 
  
2) much more seriously, exceedence probabilities are highly sensitive to model 
specification or misspecification.  The figure below was produced by fitting two different 
models to the same disease incidence data (South Carolina county level congenital 
anomaly mortality using statewide expected rate 1990 (Lawson 2008), ch 6)). 

 
Figure 1  Plots of exceedence probabilities (c=1)  generated by the WinBUGS package for the same 
dataset but different fiitted models: left panel first order spatial trend model, right panel: 
convolution model with UH and CH components (from Lawson (2008), ch 6). 
 
 
The two models were a naïve first order spatial trend model with no random effects, (left 
panel) and a convolution model (right panel). It is clear from this rather extreme example 
that the exceedence probabilities display quite markedly different patterns and levels and 
so it is clear also that this can lead to major misinterpretation. In this example the trend 
model gave a marginally lower DIC: 171.81 with pD = 2.85 whereas the random effect 
(convolution) model gave a DIC of 174.46 with pD = 11.57 (after burnin of 10000 with 
checked convergence and sample size of 10000). This in fact hints at a deeply troubling 
issue with the models chosen. While prior sensitivity must be addressed in any Bayesian 
modeling, the fact remains that researchers could happen to use a trend model (based on a 
goodness-of-fit criterion) and get a completely different set of exceedences compared to 
random effect models. While this may seem to be a deliberately extreme example, it is 
clear that model dependence is a very serious issue and means that sensitivity to model 
assumptions and to the choice of models is crucially important, if the results are to be 
trusted. This example also casts into doubt the use of random effect models, on their own, 
as a panacea in spatial modeling. It is even more troubling when spatially-referenced 
covariates are included additively with  CAR model components (Ma et al. 2007). Of 
course, model dependence is also true when other diagnostics are used such as residuals 
(Kleinman et al. 2004; Vidal-Rodeiro & Lawson  2006).  
3) Finally, given sensitivity to models chosen, it might be a concern as to what models 
are chosen within a study. Tthere is a large range of potential models that could be 
assumed for different model components (and in particular spatial components).  If the 
selection made is motivated by what can be fitted on WinBUGS rather than any general 
criteria of relevance then this is a limitation. Even using WinBUGS there are a large 



range of possible models that could be assumed for the spatial components (e.g. 
convolution models, zero-inflatedCAR models, mixture, geostatistical models, to name 
but a few). In the example above the trend model gave lower DIC and pD than the 
convolution model and both of these are available on WinBUGS.  
 In another study of clustering detection capability, Hossain & Lawson  (2006) examined 
three different models for their ability to detect spatial anomalies using exceedence 
measures, including variants of a local likelihood model and a mixture model (L&C 
model). They all performed reasonably well in comparison with a standard convolution 
model under simulation. Some of these models can be fitted on WinBUGS (L&C and 
convolution) and some not (local likelihood).  
However, if I were to fit a different model during a model fitting exercise I could in fact 
get a different exceedence probability answer, and I would not be able to use the rules as 
cited. 
The fact that exceedence probabilities are highly model dependent is a troubling issue. It 
means that rules for evaluating these measures cannot be general and must be tailored to 
specific models and their reliability must be doubted given that models with similar GOF 
measures can yield markedly different exceedence patterns.  
 
 

References 
 

Hossain,M. & Lawson ,A.B. 2006. Cluster Detection diagnostics for small area health 
data. Statistics in Medicine 25: 771-786. 

Kleinman,K., Lazarus,R. & Platt,R. 2004. A generalised linear Mixed Models Approach 
for Detecting Incident Clustrs of Disease in Small Areas with an Application to 
Biological terrorism. Am. J. Epidemiol. 159: 217-228. 

Kulldorff, M. & Information Management Services Inc . SaTScan v. 3.0: Software for the 
spatial and space-time scan statistics. Bethesda, MD, National Cancer Institute.  URL 
http://srab.cancer.gov/satscan. 2002.  
Ref Type: Unpublished Work 

Kulldorff,M. & Nagarwalla,N. 1995. Spatial Disease Clusters:Detection and Inference. 
Statistics in Medicine 14: 799-. 

Lawson,A.B. 2008. Bayesian Disease Mapping: Hierarchical Modeling in spatial 
epidemiology. CRC Press, New York. 

Lawson,A.B. & Hossain,M. 2008. Space-time cluster diagnostics with Bayesian small 
area health models. submitted. 

Ma, B., Lawson, A. B. & Liu, Y.  Evaluation of Bayesian Models for Focused Clustering 
in Health Data. Environmetrics 18, 1-16. 2007.  
Ref Type: Journal (Full) 

http://srab.cancer.gov/satscan


S.Richardson, A.Thomson, N.Best & P.Elliott 2004. Interpreting posterior relative risk 
estimates in disease mapping studies. Environmental Health Perspectives 112: 1016-
1025. 

Vidal-Rodeiro,C.L. & Lawson ,A.B. 2006. Monitoring Changes in Spatio-temporal Maps 
of Disease. Biometrical Journal 48: 1-18. 
 
 
 
 


