Environmental Exposure Assessment in Spatial Health Modeling: why is it important?

Andrew B Lawson Division of Biostatistics and Bioinformatics Department of Public Health Sciences MUSC

What I will talk about:

- Background
 - Small area health data
 - Environmental stressors and etiology
 - Modeling approaches
- Case Studies/scenarios
- Mixtures (in models and in predictors)

Challenges

Background

- Small area health data:
 - Context: geo-referenced health outcomes

Larynx cancer incidence in Lancashire NW England for the period

26 Census tracts in Falkirk, Central Scotland: counts of respiratory cancer deaths 1978 - 1983

South Carolina congenital deaths 1990

Environmental stressors and aetiology

- Air pollution
 - Particulate matter PM 10, PM2.5, speciated versions
 - Mold, pollen
 - Toxics: PCBs, PFOS, heavy metals (arsenic, lead, mercury.....)
- Soil pollution
 - Pesticide residues; arsenic, lead, mercury,.....
 - Long term concentrations/accumulations
- Water contamination
 - toxics, BOD, etc

Exposure pathways I

- Air pollution may relate to respiratory health outcomes and indeed often acute outcomes are strongly related to air events:
 - E.g. Anto et al (1993) Barcelona harbor soya bean dust events
- Proximity to sources of air pollution is important
 - Roadways
 - Incinerators
 - Docks
 - Power plants
 - Waste dump sites

Exposure Pathways II

- Some pathways are less obvious:
- Soil pollution:
 - Could be a *surrogate* for air pollution
 - Accumulation over time
 - Direct ingestion
 - Indirect ingestion: fruit and vegetables
 - Could be double exposures (air and soil)
- Water pollution
 - Direct ingestion
 - Mediator effects (eg infected fish)

Health outcomes

- Acute respiratory outcomes:
 - Asthma, COPD, URI
- Chronic exacerbation
 - COPD, CHD, MI, some cancers (larynx, lung, leukaemia, NHL), mental health
- Latency issues
 - Lag time before display of symptoms
 - affects cancers
 - Residential history becomes important when lag time is considered

Confounding effects

- Care must be taken to make sure that environmental stressors are not confounded with other effects...such as migration.
- Residential history is VERY important especially in long latency diseases
 - Sellarfield example
 - Rosyth example

Small environmental effects

"....many current methods of clustering often have poor power for detecting the small increases in risk often associated with environmental exposures." (after Waller, 1996)

• There is a need for reasonably precise tools for the detection of environmental insults.

Examples

- 1. Putative source analysis with case event data
- 2. Ecological analysis: melanoma and sunlight
- 3. Mixtures: intellectual delay and soil metals

Case event data

- Count data is the commonest format found in spatial epidemiology
- However this is just an aggregation of case event data where the (residential) location of a case of disease is the primary data focus
- Often case event data is important when small spatial scales are of interest (1-10kms for example)

Example: larynx cancer in NW England

Case event notation

• Define the study area as T

 s_i : x,y coordinate pair of the *i* the location *m* events in T

$$\{s_i\}, i = 1, ..., m$$

Control disease

- Usually the cases have associated with them a control disease realization
- This is used as a geographical control for the case distribution (acting like a expected count in the count data examples)

Control: lung cancer

Control notation

n control locations in T $\{s_j\}, j = m+1, m+n$

 Hence we treat the controls and cases as one vector of length m+n

Conditional Logistic models

- Instead we use CONDITIONING to give us a simpler labeling approach
- Intensity of the case and control events is defined to be

control : $\lambda_0(s)$ case : $\lambda_0(s)\lambda_1(s)$ modeled part: $\lambda_1(s) = \exp(\eta(s))$

Conditional Logistic models

Assume that the complete vector is used for a binary label so that

$$\mathbf{y}_i = \begin{cases} 1 & \text{if } \mathbf{s}_i \in \{\mathbf{s}_i\}, \ i = 1, \dots, m \\ 0 & \text{otherwise} \end{cases}$$

• Hence, y_i is 1 for case and 0 for a control

Logistic spatial models

• Then:

 $y_{i} \sim Bern(p_{i})$ $p_{i} = \frac{\lambda_{1}(s_{i})}{1 + \lambda_{1}(s_{i})}$ If $\lambda_{1}(s_{i}) = \exp(x'_{i}\beta)$ where $x'_{i}\beta$ is a linear predictor

- This is just a logistic regression formulation
- Hence as long as you have covariate information at the locations of controls and cases you can assume a conditional logistic spatial model

Exposure Modeling

- How does incidence relate to source
 - Distance effect
 - Directional effect
 - More complex interaction

Plume simulation : Weibull-Von Mises spatial deposition map

Typical example

 Location (s), distance from a pollution source (d), age (x) as variables must be available for all cases and controls

$$\begin{aligned} \lambda_1(s_i) &= \psi_0 \exp\{\gamma_1 d_i + \gamma_2 x_i\} = \exp\{\gamma_0 + \gamma_1 d_i + \gamma_2 x_i\} \\ d_i &= ||s_i - s_0|| \quad \text{distance from source} \\ s_0 \text{ is the source location} \end{aligned}$$

Addition of Random effects

- It is easy to add various types of REs
- UH can be added via an individual level zero mean Gaussian effect:V~N(o,tau)
- CH is slightly different: A CAR model cannot be simply applied here
- Can use a CAR if you can defined neighborhoods?
- Otherwise must use a full MVN geostatistical model

Delauney Neighbors

X 0.1 0.2 0.4 0.45 0.6 0.3 Y 0.1 0.3 0.7 0.2 0.7 0.4 Num 2 4 3 4 3 4

Example

- Larynx and lung cancer (NW England)
- Variables: x, y, case indicator, distance, age
- Using Delauney neighbors to define adjacencies
- Distance is the exposure surrogate

Models

	DIC	pD
• I D only	447.45	0.44
• II D+V	439.74	41.12
• III D+V+A	366.67	89.01
• IV D+A	444.69	1.82
• V D+V+U	447.4	5.67
 VI D+V+U+A 	352.94	118.10

Lowest DIC is model VI

• D: distance; V: UH; U: CH; A: age

Model VI results

Node statistics

node	mean	sd	MCerro	r2.5%	median	97.5%	start	sample
gam0	-7.623	1.475	0.2146	-10.64	-7.43	-5.53	10001	2000
gam1	30.56	19.92	1.523	-1.001	29.31	73.13	<mark>10001</mark>	2000
gam2	0.02479	0.01175	0.001538	0.003891	0.02232	0.04966	10001	2000

Reference

• Lawson, A. B. (2012) Bayesian Point Event Modeling in Spatial and Environmental Epidemiology. *Statistical Methods in Medical Research* 21, 5, 509-530

Model selection with environmental linkage

- Melanoma and sunlight in SC (14 years: 1996-2009)
 - Ecological relation between sunlight exposure and melanoma incidence hypothesized

Average daily sunlight (KJ/m²)

Models

- Additional confounders and unobserved effects
 - unemployment percentage (ST)
 - Percent African American (S)
 - Median income (S)
 - Random effects (S, T and ST)

Selected models for melanoma

Model		Model Probabilities			Favored Linear Predictor	
F-	Spatial <i>P</i> ₃	0.41 (0.04,0.88)	0.29 (0.01,0.64)	0.29 (0.01,0.64)	$\alpha_1 x_{1i} + \alpha_2 x_{2i}$	
F2	Spatio- Temporal	0.29 (0.01,0.66)	0.30 (0.01,0.65)	0.40 (0.03,0.86)	$\alpha_{1j}x_{3ij} + \alpha_{2j}x_{4ij} + \gamma_j$	
F ₃ 0.33 0.34 (0.02,0.69) (0.02,0.68)		0.34 (0.01,0.68)	NA			
1	F4 0.17 (0.16,0.18)		$\alpha_{_{3j}}x_{_{3ij}}+\alpha_{_{4j}}x_{_{4ij}}+\gamma_{_j}$			

F4 general model

• Log risk

$$\log\left(\theta_{ij}\right) = \alpha_0 + p\omega_i^S + (1-p)\omega_{ij}^{ST} + \psi_{ij}$$

• With

$$\omega_i^S = \alpha_1 x_{1i} + \alpha_2 x_{2i} + u_i + v_i$$
$$\omega_{ij}^{ST} = \alpha_{3j} x_{3ij} + \alpha_{4j} x_{4ij} + \gamma_j$$

Parameter estimates: F4 model

α ₃₁	-0.067
α ₃₂	-0.106
<i>a</i> ₃₃	-0.143
α_{34}	-0.167*
$lpha_{35}$	-0.154
α_{36}	-0.213*
α_{37}	-0.141
$lpha_{38}$	-0.141
α ₃₉	-0.197*

- This model consist of two space-time covariates (sunlight and unemployment rate) and a temporal random effect.
- Posterior mean estimates of the sunlight parameter for 9 years (1999-2007)
- Mostly poorly estimated and skewed.

Reference

 Carroll, R., Lawson, A.B. et al (2016) Spatio-temporal Bayesian model selection for disease mapping *Environmetrics* (to appear)

Mixtures

- Many environmental health problems involve the assessment of the effect of *multiple* predictors and hence mixture of exposures.
 - Particulate matter can be speciated into multiple different types: size based or chemical composition
 (PM10,PM2.5,.....carbon, etc)
 - Soils can have pesticide metal residues (>20 chemicals)

The National Institute of Environmental Health Sciences (NIEHS) has a major focus in mixtures:

<u>http://www.niehs.nih.gov/research/supported/exposure/mix</u> <u>tures/index.cfm</u>

Mixture modeling

- First issue is that of multicolinearity:
 - Some predictors can mask effects of other predictors
 - Unique contribution of each predictor can be difficult to assess when multiple predictors are present.
 - Possible approaches could be orthogonal projection/decomposition, grouping, or Bayesian adaptive regression trees (BART)
- Second issue is that of sequencing:
 - If you have measured multiple exposures *in sequence* how do you assess the unique effect of these on a single health outcome (i.e. the outcome is *not* longitudinal)
 - This typically is the problem with residential history studies or pregnancy exposures?

Classic example

• Outcome is normal or abnormal birth (binary)

- Sequence of exposures during pregnancy is available but no longitudinal outcome data
- A number of studies are examining this type of situation
- One such attempt to assess monthly impact of metal exposure from soils was:

Onicescu, G., Lawson, A. B., et al (2014) Bayesian Importance parameter modeling of misaligned Predictors: soil metal measures related to residential history and intellectual disability in children. *Environmental Science and Pollution Research.*, DOI: 10.1007/S11356-014-3072-8

But Finally

Large environmental effects

- Although small effects are pervasive there are examples of large exposures where health outcomes are dramatic.
- Example: Graniteville chlorine gas disaster (2005)
 - On January 6th 2005, a 16 car train derailment led to an estimated release of 54,480 kg of liquid chlorine in Graniteville, South Carolina, USA. Over 5,000 residents were evacuated within one mile of the accident.
 - Nine deaths were initially reported, 71 individuals hospitalized, and at least 529 people were treated and released from local emergency departments.
 - In total, 1,384 casualties have been identified

Graniteville chlorine disaster (2005)

2016

Summary

- Environmental exposure is often linked to a range of health outcomes
- These outcomes could be acute (asthma) or chronic (cancer or mental health ?)
- Spatial methods can be important in assessing (particularly chronic) exposures.
- Spatio-temporal methods should also be considered
- Mixtures of exposures is a major and challenging methodologic area
- Occasionally large environmental effects also lead to large scale health effects.