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Small area health data 
characteristics

 Small area health data is characterized by discrete 
outcomes:
 Incident/prevalent counts in arbitrary regions (zip 

codes, census tracts, ZCTAs, counties etc)
 Indicator flag for individual outcome (late/early stage 

breast cancer; competing risks: larynx versus lung 
cancer) which is geo-referenced

 Categorical individual outcomes: stages of cancer, 
multiple competing risks (osphageal, larynx, lung) 
which are geo-referenced
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When is geo-referencing 
important?
 Environmental effects on health are often highly 

localised and depend crucially on exposure at or near 
residential address

 Residential address is often assumed to be a surrogate 
for exposure itself.

 Health services availability/access could be 
geographically constrained

 Genetic effects could be evident in homogeneous and 
non-dynamic populations

 Behavioral factors could be neighborhood specific
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Larynx cancer case incidence in NW England 
1973 – 1984 (residential addresses)
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26 Census tracts in Falkirk, Central Scotland: counts of 
respiratory cancer deaths 1978 - 1983   

NCI Geospatial Approaches to Cancer Control  
2016



14 years of melanoma incidence in 
South Carolina (SIRs) 1996 - 2009
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Sunlight (average annual daily 
Kjl/m2)
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Geospatial information is 
becoming much finer in resolution
 Google earth: 

 Geo-referencing of addresses is easy
 street view is now used in studies of neighborhood 

characteristics
 Phone apps with GPS can be used to locate actions by 

participants in behavioral studies
 Interventions
 Crowd sourcing 

 Portable personal air quality monitors
 Social media:

 Twitter ?
 Facebook?
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Statistical Modeling issues
 Inferential issues must arise when assessing disease risk. 
 Commercial GIS systems are limited in that they largely do 

not provide good flexible inferential tools, especially if 
temporal variation is to be studied.

 Modeling of risk is preferable to testing 
 Why is testing not useful?

 Limited focused application
 cant be adjusted easily for predictor effects
 Relies on large sample results
 Lack of flexibility 
 Cant assess latent structure

 Estimation/modeling is better
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Bayesian Modeling of diseased risk
 Bayesian approaches to geospatial modeling of risk are 

very flexible
 They assume a natural hierarchical model for risk
 They allow flexible specification of spatial correlation
 They allow complex structures to be included at 

different levels of the hierarchy
 Contextual effects can be easily incorporated within 

models 
 Neighborhoods can be considered to be contextual

NCI Geospatial Approaches to Cancer Control  
2016



Bayesian Modeling of diseased risk
 Bayesian models allow the specification of prior 

distributions for parameters and hence allow great 
flexibility of both to allow a broad range of parameter 
values or a proscribed range.

 The incorporation of measurement error, missingness, 
regression variable selection and model selection, and 
joint modeling of dependencies between different 
diseases can be straight forwardly made. 

 Latent unobserved structure can be modelled more 
easily in this context (SEMS, ME, hidden Markov 
models)
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Multivariate modeling of small area 
cancer incidence: an example
 Lung and bronchus cancer (LBCa)
 Oral cavity and pharynx cancer (OCPCa)
 Melanoma (MCaS)

 Some commonalities:
 Behavioral impacts could be common for LBCa and OCPCa
 Sunlight exposure could impact both MCaS and OCPCa
 Unobserved/unknown etiological links?

 Observed predictors
 Observed for 46 counties of South Carolina over 14 

years
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Predictors
 ST: average daily sunlight, unemployment rate , percent 

under poverty line
 S: proportion of population with health insurance, 

radon (county average in home), population percentage 
African American

 T: rainfall (annual average)

NCI Geospatial Approaches to Cancer Control  
2016



Risk models
 We assume that the log relative risk is to be modelled
 In previous work we have found that for spatio-

temporal modeling mixtures of components are useful 
prescriptions:

 For k diseases:
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Components
 Spatial:

 Spatio-temporal:

 Assume sharing of uncorrelated spatial and random walk effects 
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Prior distributions 

Precision prior distributions:  assumed sd-uniform prior 
distributions with fixed range i.e. 
These are reasonably weakly informative (c.f.  PC priors)
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Computational 
Considerations
 Model selection strategies can be computationally 

intensive.
 We considered working with Laplace approximation but it 

lacked the necessary flexibility.
 We consider McMC as a suitable computational paradigm.
 To reduce computation time, we used the R package 
snowfall.

 Currently exploring R-NIMBLE for speedups with CAR 
approximations



Fitted Models
Model Definition Formulation Mixture parameter

F1 Uncorrelated linkage 
between the spatial and ST 
components of the models log 1

logit~ 0,~ 0,
F2 Spatial structure via a 

conditional autoregressive 
(CAR) distribution on the 
mixture parameter

logit ~~ 0,
F3 Mixture parameter varies 

across space and time, but 
the correlation remains only 
spatial. log 1

logit ~ 0,~
F4 Mixture parameter varies 

across space and time with 
spatial and temporal 
correlation.

logit /2~~ 1~ 0,



Some 
fitted 
model 
variants 
with 
mixture 
sharing

Disease Fitted 
Model 

Univariate Multivariate 

      
All F1 12295.14 824.78 11780.97 477.71 

F2 11413.71 387.91 11749.35 457.21 
F3 11448.8 449.03 11764.26 541.69 
F4 11404.57 395.76 11782.37 493.18 
KH 11665.43 518.40 11832.07 560.68 

OCPCa F1 3212.38 102.74 3450.55 131.32 
F2 3204.27 95.03 3446.10 130.56 
F3 3196.91 101.39 3471.25 163.55 
F4 3197.54 95.96 3604.93 201.53 
KH 3223.60 105.27 3482.81 163.04 

MCaS F1 3850.89 195.90 3815.31 182.49 
F2 3785.76 165.16 3848.12 190.28 
F3 3815.19 202.68 3846.18 218.29 
F4 3791.33 175.25 3757.62 160.52 
NK 3941.36 251.21 3857.35 233.16 

LBCa F1 5231.87 526.14 4515.12 163.90 
F2 4423.68 127.72 4455.13 136.38 
F3 4436.70 144.96 4446.84 159.85 
F4 4415.70 124.55 4419.83 131.13 
KH 4500.47 161.92 4491.91 164.48 
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Notes
 Conventional KH model never favored for these data 

either as univariate or multivariate fits.
 Lung and bronchus favors a more complex F4 model 
 Melanoma also favors F4 for the multivariate (which 

bests the univariate fit)
 Oral cavity and pharyngial is different in that it shows 

F2 is favored for the multivariate fit where there is no 
temporal mixing dependence. There is in fact limited 
temporal variation in this disease.



Mixture probability estimates for 
F2
 Spatial only 

mixing
 Relatively 

uniform for 
OCPCa

 MCaS least 
affected 
across U or 
M

 LBCa: little 
change in 
multivariat
e but more 
variable as 
a univariate 



Univariate and multivariate OCPCa F4 mixture 
parameter estimates for the first, a central, and 
the last years. 



MCaS F4 fit: mixture parameter 
estimates



LBCa F4 fit: mixture parameter 
estimates
 LBCa: 

univariate 
and 
multivariate 
different.
 Sharing 

impacts 
more



Predictor 
model 
comparison

Model Univariate Multivariate 

      

Knorr-Held 

All 11665.43 518.40 11832.07 560.68 
OCPCa 3223.60 105.27 3482.81 163.04 
MCaS 3941.36 251.21 3857.35 233.16 
LBCa 4500.47 161.92 4491.91 164.48 

F1 

RE 

All 12295.14 824.78 11780.97 477.71 
OCPCa 3212.38 102.74 3450.55 131.32 
MCaS 3850.89 195.90 3815.31 182.49 
LBCa 5231.87 526.14 4515.12 163.90 

PRED 

All 11639.88 441.45 11846.23 489.72 
OCPCa 3239.50 90.27 3436.49 135.27 
MCaS 3889.96 206.49 3871.37 185.06 
LBCa 4510.42 144.69 4538.36 169.38 

F2 

RE 

All 11413.71 387.91 11749.35 457.21 
OCPCa 3204.27 95.03 3446.10 130.56 
MCaS 3785.76 165.16 3848.12 190.28 
LBCa 4423.68 127.72 4455.13 136.38 

PRED 

All 11520.61 443.91 11885.63 487.34 
OCPCa 3241.74 105.89 3431.50 131.08 
MCaS 3799.99 185.99 3959.95 203.01 
LBCa 4478.88 152.03 4494.18 153.26 

F3 

RE 

All 11448.8 449.03 11764.26 541.69 
OCPCa 3196.91 101.39 3471.25 163.55 
MCaS 3815.19 202.68 3846.18 218.29 
LBCa 4436.70 144.96 4446.84 159.85 

PRED 

All 11453.95 469.19 11797.07 565.01 
OCPCa 3211.40 109.45 3507.38 179.42 
MCaS 3806.47 200.19 3838.37 215.73 
LBCa 4436.08 159.55 4451.33 169.86 

F4 

RE 

All 11404.57 395.76 11782.37 493.18 
OCPCa 3197.54 95.96 3604.93 201.53 
MCaS 3791.33 175.25 3757.62 160.52 
LBCa 4415.70 124.55 4419.83 131.13 

PRED 

All 11458.04 447.79 11939.70 591.29 
OCPCa 3239.07 112.20 3732.72 263.59 
MCaS 3793.16 193.44 3761.95 177.77 
LBCa 4435.81 142.15 4445.03 149.93 
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Predictor versus REs
 Overall there are few situations where the predictor 

models acheive better performance than RE models
 Exception is OCPCa for F2 where the multivariate model 

fits better with predictors.
 Other results: both LBCa and MCaS have better RE fits 

although for MCaS there is equivocal results.
 Notable that over time the OCPCa is relatively 

constant but the other diseases show some increasing 
trend 
 This leads to a jump in the shared component around 

2005



Temporal Profiles: multivariate 
models

Temporal 
random walk 
profiles for 
the 3 diseases 
and shared 
component 
under the 
multivariate 
model with 
fitted models 
F2 and F4. 
The jump in 
the shared 
component is 
largely due to 



MSPE 
results 
for 
each 
year for 
OCPCa



Epidemiologic conclusions
 OCPCa: for univariate  F3 or F4, while simpler F2 favored for 

mulitvariate
 LBCa:  F4 was strongly favored for univariate and multivariate
 MCaS: F2 (univariate) and F4 (multivariate)

 Overall: 
 OCPCa does not vary temporally and the mixing parameters show 

limited spatial structure, whereas the other diseases show 
differences.

 Only for OCPCa do the predictor models fit better than RE models
 Shared models perform well for LBCa and MCaS, but the sharing 

displays a jump due to the differences in temporal behavior of the 
OCPCa and the other cancers



Melanoma and sunlight
 Can we assess the ecological association between 

MCaS and sunlight ?
 We have 14 years of melanoma incidence in counties of 

SC (46) and
 Sunlight intensity (kjl/m2) in counties over years 
 We can assume a spatial only or a spatio-temporal 

relationship
 We will allow for unobserved confounding with 

random effects 

NCI Geospatial Approaches to Cancer Control  
2016



Models 
 Spatial

 Spatio-temporal
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Results
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Model DIC pD WAIC wW 
Spatial 
(2004) 

    

BYM 286.4 24.65 287.5  18.56 
1+sun+BYM 284.2 23.79 284.0 17.17 

sunβ  
(median) 

0.0004 (0.0001, 0.0006)  

     
ST models      
1996-2014     
     
Knorr-Held* 3865.5 294.8 3847.5 212.8 
+sun 3864.8 288.8 3854.6 214.8 

sunβ  
(median) 

0.0001 (0.0001, 0.0003)  

     
-sun 
- interaction 

4278.8 58.08 4380.79 141.16 

+sun 
-interaction 

4279.3 57.67 4389.54 146.25 

sunβ  
(median) 

0.0000 (-0.0001, 0.0001)  

 



Notes
 Inclusion of sunlight does show some marginal 

significance
 Temporal range can affect these marginal effect 

estimates
 Interactions are important

 Removal decreases the goodness of fit by a large amount
 Also sunlight fails to be significant when interaction is 

removed
 Increased noise tends to mask the significance
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Public Health impact
 Public health is carried out in a geo-spatial context

 Resource allocation based on risk estimates
 Analysis of local clustering
 Local environmental exposure links to disease 

outcomes.
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Cancer Control and Prevention?
 Interventions can be targeted geo-spatially

 Important if neighborhood effects are important
 Health Services can be targeted at catchments defined 

by risk 
 Disease clusters can be addressed

 Resource allocation is usually based on SIRs for 
different regions and so directly relates to cancer risk

 Prevention:
 Targeted to populations at most risk which can be geo-

spatially defined
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