Bmtry 763: Tutorial 1

1) Assume a Poisson count model for the data from small areas, with $y_i \sim Poiss(e_i\theta_i)$. The SMR is an estimator of relative risk. For a set of *m* regions, each region has SMR given by

$$\hat{\boldsymbol{\theta}}_i = \boldsymbol{y}_i / \boldsymbol{e}_i \tag{1}$$

where y_i is the region disease count and e_i is the expected count.

a) Show that the maximum likelihood estimator of θ_i , $\hat{\theta}_i$ say, is given by (1) above.

b) Show that this estimator has standard error given by

$$se(\hat{\theta}_i) = \sqrt{\theta_i/e_i}$$

c) If $\theta_i = 1$, show that this standard error only depends on the e_i . What happens when $e_i > 1$, or $0 < e_i < 1$.

2) A smoothed estimator of relative risk is given by

$$\hat{\theta}_i = (y_i + a)/(e_i + b)$$

for fixed a, b

Show that the standard error of this estimator only depends on e_i, θ_i , and b.

3) Within a study window A, a set (realization) of case events are observed. They are denoted $\{x_i\}$, i = 1, ..., n. The first order intensity of the Poisson process is $\lambda(x) = \rho g(x)$.

The log-likelihood for the intensity is given by:

$$l = \sum_{i} \ln(\lambda(x_i)) - \int_{A} \lambda(u) du$$

Find the maximum likelihood estimator of ρ .