model { for (i in 1:m) { # Poisson likelihood for observed counts y[i]~dpois(mu[i]) mu[i]<-e[i]*theta[i] # Relative Risk theta[i]~dgamma(a,b) r[i]<-y[i]-mu[i] } # Prior distributions for "population" parameters a~dexp(0.1) b~dexp(0.1) # Population mean and population variance mean<-a/b var<-a/pow(b,2) } list(m=46, y=c( 46, 268, 26, 322, 43, 48, 186, 195, 26, 590, 100, 71, 95, 83, 82, 140, 78, 149, 41, 49, 278, 128, 662, 167, 50, 394, 30, 110, 105, 126, 56, 396, 28, 81, 76, 84, 155, 210, 172, 520, 32, 523, 223, 84, 96, 275), e=c( 49.43786, 269.0482, 23.00089, 322.7169, 33.11245, 43.68563, 218.6871, 274.0518, 28.20118, 635.1979, 98.68706, 69.04482, 82.44996, 61.8455, 74.99173, 133.2004, 59.70397, 176.8881, 40.14719, 44.94607, 250.6896, 107.8332, 710.1876, 127.6951, 38.53552, 350.7576, 34.10996, 97.52899, 118.1897, 126.9444, 40.94199, 411.9688, 19.15737, 69.46429, 59.38685, 69.16725, 128.5702, 176.3502, 214.9299, 616.2793, 34.17017, 496.6627, 215.0102, 61.20525, 74.50402, 309.7152))