
What is it for, and why do it ?
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Regression and fixed effects
 The most basic model we usually assume which relates 
an outcome to a predictor/covariate is a regression 
model:

 This assumes a linear relation and a single error term

BMTRY 763   2019

i i i

i 0

i 0 1 1i

y e
where

or if there is a predictor then
x

= m +

m =a

m =a +a



Error assumption
 The linear model above assumes variation of Y around 

a mean level with a single error term (e). This is true 
for Gaussian models for example, where e has a 
Gaussian distribution

 In many studies there can be extra noise in the 
outcome. Frailty/susceptibility is a unit level effect for 
example.

 Hence there could be an extra underlying effect in the 
relation:

 So that Y doesn’t vary directly around the mean 
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Variance components
 This situation used to be called ‘variance components’ 

modeling
 Now they are usually called ‘random effect’ models
 In Gaussian models, the effects are additive and so 

there must be some distinction between the effects 
otherwise they are not identified. 

 In discrete data models (Poisson, binomial, 
categorical) this is not such an issue.

 However identification of effects is a concern for such 
models
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Simple models
 Assume a simple Gaussian linear regression:

 A random intercept model which addresses the extra noise of the 
outcome (frailty/susceptibility).

 If Y was observed multiple times then we would have an 
independent estimate of (pure) error, but if not then 
assumptions would have to be made to distinguish the intercept 
and global error. 

 If you believe that extra variability exists in Y then this is how to 
model it.
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Discrete outcome models
 For discrete models the random effect is less 

confounded. eg
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Random Intercept models 
 Outcome confounding in population level studies 

(cross-sectional, cohort, spatial) means that random 
intercept models should be used in general. 

 Hence, it would be important to have access to 
software that allows this. Bayesian software such as 
WinBUGS/OpenBUGS, INLA, CARBayes, Nimble all 
allow the use of random intercept models at the unit 
level.

 Note that experimental data often does NOT require 
random effect modeling eg the famous Bliss Beetle 
LD50 study
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Interpretation
 Poisson example:
 Value of Y varies around
 If we also had predictors then we are assuming that 
Y response consists of the predictor effect plus the error 
(random effect)
 Hence the extra noise adds into the confounded 

outcome
 Note that even without a linear predictor, as a function 

of covariates, we have a mixed effect model (GLMM)
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Binomial outcome
 Count in finite population:

 The random effect adjust the probability of the 
outcome. 

 Even for binary data extra noise will affect the 
probability
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Fitting random intercept models I
 Random effects must be assigned a structure
 It is natural to assume that they are centered on zero 

and symmetric 
 Also if uncorrelated (extra) variation then it is usual to 

assume IID

 This would be called a prior distribution in Bayesian 
modeling
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Fitting random intercept models II
 A basic Poisson model with random intercept would 

then be 

 This can be fitted using standard Bayesian software 
such as BUGS or INLA
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Simulated examples 
 binomial_over_dispersion.txt
 This code generates outcomes from a Bernoulli model
 With different definitions of logit(p)
 Y1  constant b0 = 0; p1 = 0.5
 Y2 intercept b0 plus RE: b1 ~N(0,3)
 Y3 intercept plus 2 covariates (x1,x2) ; x1 is trended, x2 

is randomly generated; no RE
 Y4 is as Y3 but with random effect (b1) with SD = 3
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Models fitted using INLA
 Set an index:
 reg<-seq(1:N)
 Example of code:
form5<-y4~1+x1+x2+f(reg,model="iid",param=c(1,0.5))
res5<-
inla(form5,family="binomial",data=data1,Ntrials=rep(den,N),
control.compute=list(dic=TRUE,waic=TRUE,cpo=TRUE))
#res5$summary.fixed[1]
#summary(res5)
res5$dic$dic;res5$waic$waic;res5$mlik
PML<-sum(log(res5$cpo$cpo));PML
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Simulation results table
 I simulated a variety of binomial models with and 

without covariates and with and without random 
effect noise

 I fitted a range of models to these simulated data 
including :
 Constant risk only
 Constant risk and random intercept
 Regression only
 Regression and random intercept 
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Settings
 Binomial simulation with denominator (den = 50)
 Sample size N=100
 Random effect assumed to be b1 ~N(0,sd=3)
 Fixed intercept: b0 = 0
 Y1,….Y4<- binom(N,den,p*)
 p*=exp(LN)/{1+exp(LN)}

BMTRY 763   2019



Settings
 LN = constant (b0)  y1
 LN = b0+b1    y2
 LN = b0+b*x1+c*x2  y3       where x1 and x2 are 

covariates (x1 trended and x2 random Gaussian)
 LN = b0+b*x1+c*x2+b1    y4
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Fitted models
Models Sim fitted DIC
1 Y1 fixed intercept 549.7

2 Y2 fixed intercept 4199.2

3 Y2 fixed and 
random 
intercept

476.8

4 (6) Y4 regression + 
random 
Intercept

441.1

5 (7) Y4 Random 
intercept  only

441.1

6 (8) Y4 regression 
only

3468.5
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Notes
 Y2 random intercept simulation and the random effect 

fitted model does best at describing the variation 
(model 3 lower DIC than model 2)

 Y4 is simulated as from a regression with random 
effect added. The best model in terms of DIC is the 
regression +random intercept   OR random intercept 
only

 Y4 the regression only model (model 6) is much 
higher DIC

 REs nearly always improve fit unless there is little 
noise.
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Finally
 This demonstrates that it is very important to consider 

models with REs when extra noise is suspected such as 
in population studies.

 Even for description: RE models can describe variation 
well even without regressors.

 Many standard statistical packages don’t allow unit 
level random effect models. 

 Bayesian packages (WinBUGS, OpenBUGS, JAGS, 
INLA, Nimble, Stan) all do allow this.
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