What is it for, and why do it ?
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Regression and fixed effects

* The most basic model we usually assume which relates

an outcome to a predictor/covariate is a regression

model:
Yi= 1+ €
where
B = &g

or if there is a predictor then

B = Qp =+ 0y Xy,

* This assumes a linear relation and a single error term
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Error assumption

* The linear model above assumes variation of Y around
a mean level with a single error term (e). This is true
for Gaussian models for example, where e has a
Gaussian distribution

* In many studies there can be extra noise in the
outcome. Frailty/susceptibility is a unit level effect for
example.

* Hence there could be an extra underlying effect in the

relation:  y —y. 4 e, +e,
* So that Y doesn't vary directly around the mean
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Variance components

* This situation used to be called ‘variance components’
modeling

* Now they are usually called ‘random effect’ models

* In Gaussian models, the effects are additive and so
there must be some distinction between the effects
otherwise they are not identified.

¢ In discrete data models (Poisson, binomial,
categorical) this is not such an issue.

* However identification of effects is a concern for such
models
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f Simple models

* Assume a simple Gaussian linear regression:

* A random intercept model which addresses the extra noise of the
outcome (frailty/susceptibility).

If Y was observed multiple times then we would have an
independent estimate of (pure) error, but if not then
assumptions would have to be made to distinguish the intercept

Yi=H +€;+€y
where

i = O + Oy Xy,
and so

Y = (o +€5)+ X, +ey

and global error.

If you believe that extra variability exists in Y then this is how to

model it.
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Discrete outcome models

* For discrete models the random effect is less
confounded. eg

Poisson: y. ~Pois(u,);

log(,) =0, +€, : extra Poisson variation/ over dispersion
b =explag +€)
binomial: y, ~bin(p,n);

logit(p) = log(p / (1—p.)) =, +€, : extra binomial variation
P =explo, +€;)/ (1+explo, +-€))
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Random Intercept models

* Outcome confounding in population level studies

(cross-sectiona

intercept mode]

* Hence, it woulc

, cohort, spatial) means that random
s should be used in general.

| be important to have access to

software that allows this. Bayesian software such as
WinBUGS/OpenBUGS, INLA, CARBayes, Nimble all
allow the use of random intercept models at the unit

level.

* Note that experimental data often does NOT require
random effect modeling eg the famous Bliss Beetle

LDso0 study
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Interpretation

* Poisson example: y. ~ Pois(exp(c, +e.))

* Value of Y varies around exp(q,)
* If we also had predictors then we are assuming that

Y response consists of the predictor effect plus the error
(random effect)

* Hence the extra noise adds into the confounded
outcome

* Note that even without a linear predictor, as a function
of covariates, we have a mixed effect model (GLMM)
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Binomial outcome

* Count in finite population:

y. ~ bin(p,,n,)
p. =exp(a, +¢e,)/ {1+exp(a, +e,)}
E(y|) == exp(uo + €, )/ {1+ exp(O‘o T €y )}
® The random effect adjust the probability of the
outcome.

* Even for binary data extra noise will affect the
probability
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Fitting random intercept models |

* Random effects must be assigned a structure

e It is natural to assume that they are centered on zero
and symmetric

» Also if uncorrelated (extra) variation then it is usual to

assume 11D id
e, ~N(O, ’re_1)

where
T, IS @ precision

* This would be called a prior distribution in Bayesian
modeling
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Fitting random intercept models Il

* A basic Poisson model with random intercept would

=

log(p;) = o, + €y
o, ~ N(O, T,
e, ~N(O,1.")
T. ~ Ga(a,b)

* This can be fitted using standard Bayesian software
such as BUGS or INLA
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Simulated examples

* binomial_over_dispersion.txt

* This code generates outcomes from a Bernoulli model
» With different definitions of logit(p)

* Y1 constant bo = 0; p1 = 0.5

* Y2 intercept bo plus RE: b1 ~N(o,3)

* Y3 intercept plus 2 covariates (x1,x2) ; x1 is trended, x2
is randomly generated; no RE

* Y4 is as Y3 but with random effect (b1) with SD =3
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Models fitted using INLA

* Set an index:

* reg<-seq(1:N)

* Example of code:
forms<-y4~1+x1+x2+f(reg,model="iid",param=c(1,0.5))

ress<-
inla(forms,family="binomial",data=data1,Ntrials=rep(den,N),
control.compute=list(dic=TRUE,waic=TRUE,cpo=TRUE))

#ress$summary.fixed|1]
#summary(ress)
resssdicsdic;resg$waicswaic;ressgsmlik
PML<-sum(log(ress$cposcpo));PML
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Simulation results table

* [ simulated a variety of binomial models with and
without covariates and with and without random
effect noise

e I fitted a range of models to these simulated data
including :
e Constant risk only
e Constant risk and random intercept
e Regression only
e Regression and random intercept
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Settings

* Binomial simulation with denominator (den = 50)
* Sample size N=100

» Random effect assumed to be b1 ~N(0,sd=3)

* Fixed intercept: bo = o

* Y1,....Y4<- binom(N,den,p*)

* p*=exp(LN)/{1+exp(LN)}
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Settings

* LN = constant (bo) y1
* LN =bo+b1 y2

* LN = bo+b*x1+c*x2 y3  where x1 and x2 are
covariates (x1 trended and x2 random Gaussian)

* LN = bo+b*x1+c*x2+b1 y4
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Fitted models

__

fixed intercept 549.7

4 (6)

5(7)

6 (8)

Y2
Y2
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fixed intercept 4199.2

fixed and 476.8
random
intercept

regression + 441.1
random
Intercept

Random 441.1
intercept only

regression 3468.5
only



Notes

* Y2 random intercept simulation and the random effect
fitted model does best at describing the variation
(model 3 lower DIC than model 2)

* Y4 is simulated as from a regression with random
effect added. The best model in terms of DIC is the
regression +random intercept OR random intercept
only

* Y4 the regression only model (model 6) is much
higher DIC

* REs nearly always improve fit unless there is little
noise.
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Finally

* This demonstrates that it is very important to consider
models with REs when extra noise is suspected such as
in population studies.

* Even for description: RE models can describe variation
well even without regressors.

* Many standard statistical packages don’t allow unit
level random effect models.

* Bayesian packages (WinBUGS, OpenBUGS, JAGS,
INLA, Nimble, Stan) all do allow this.
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