
SESSION: Putative
Source Analysis

Key Issues:
Objectives of these studies are:
 To assess the effect of a pollution source or

sources on the health status of an area
 To make inferences about the existence of

pollution in an area
 To respond retrospectively to alarms

Scenario 1: a local community is concerned
about the effect of an incinerator on the
health of the community.

Scenario 2: A cluster of disease incidence is
thought to exist in a local area and it is to be
assessed and analysis of its relation to
(putative) local pollution sources is to be
made

Scenario 3: A known pollution source (i.e.
health hazard) is to be monitored for its effect
on the a local population



In 1 and 2, usually a retrospective
assessment of the incidence is required. In 3,
a prospective analysis can be planned.



Study Design Issues
In what follows, we consider a delimited
geographical study area or window within
which data concerning disease occurrence
and exposure to the pollution source are
collected. Issues concerning the strategic
aims of the study must be considered prior to
detailed consideration of the appropriate
study region and data collection
requirements.

Retrospective and Prospective
Studies
During the 1980’s, a number of studies of
disease occurrence in geographical regions
around putative sources of risk were carried
out. Most of these were ‘reactive’, in that
suspicion of a health risk, due to the past
operation of a pollution source, instigated a
review of the historical evidence for a link
between disease incidence and exposure to
the source. In essence, a retrospective study



of disease occurrence was carried out. In
some cases, continued monitoring of the
source was also recommended or initiated.
However, solely prospective studies of
sources are seldom encountered. These two
approaches and their respective strengths
and weaknesses are well-known in the
epidemiological literature.

Such studies of effects of pollution have a
number of limitations, however. First,
 typically the emission characteristics of a

source are not recorded for a suitable time
period. Retrospective data on emissions may
not be available and prospective monitoring
data is expensive to collect over a long time
period for a wide range of substances of
interest.

 Often, no direct information is available on
correlation between emission and disease
occurrence.

 Furthermore, exposure and disease data are
often collected by separate groups at different
levels of resolution (even in prospective
studies).



 the nature of available data may be limited
for particular diseases or health status
indicators, or for particular time periods.

 Often, nationally-collected data rather than
data from a specially designed study must be
utilised. In some cases, the level of resolution
in available data constrains the analysis
considerably. For example, some diseases are
reported only as counts from postal zones or
census enumeration districts and not as exact
addresses due to confidentiality. In that case,
methods based on analysis of counts rather
than point events are appropriate.

Inevitably, such regionalisation leads to some
loss of information. For example, very small
clusters cannot be detected if they occur
within a large census tract as the aggregate
disease rate for the tract as a whole may not
differ from the background disease rate. Only
if the spatial pattern of events occurs at a
larger scale than the measurement unit will it
be detectable in regionalised data.
 for chronic outcomes like cancers, the

temporal lag between exposure and an event



of interest may be on the order of years or
decades. Mobility of individuals over such a
time period can confound exposure-outcome
relationships and cause prohibitive costs in
prospective studies over large areas.

Study Region Design
The design of a study region or window is of
great practical importance. Usually, a study
will concern the distribution of events (e.g.
incident disease cases) within a fixed map
area of given size and shape. The choice of
size and shape can have considerable impact
on study results and, while often it is not
possible to choose the most appropriate
region, some consideration should be given
to these issues.

Region Size
A study region should be defined which is of
sufficient size that any effects of a putative
source can be measured adequately. As it is
often not possible to assess, a priori, the
spatial scale of pollution effects, it is therefore
important that a large region including the
pollution source should be used. In many



published studies a region is defined and the
total incidence in the region is analysed
(compared to external ‘control’ regions). The
Lenihan report (1985) provides an example of
this approach. If a region is specified which is
larger than the true pollution range then a
localised effect within some part of the region
may be diluted. On the other hand, a small
region may truncate the evidence and not
represent the complete effects in the
population. In addition, the use of multiple
region sizes may still induce problems in data
analysis if a pollution effect occurs at a spatial
scale different than those considered.
 In previous studies, sizes of region, in radial

units from a source, vary from less than 1
kilometre to 10 kilometres. Most study
windows have areas between 10 and 100
square kilometres. Often, the size of region is
defined by a natural break in the underlying
population. For example, the boundary of a
town or physical barriers such as rivers,
mountains, or coastlines may affect the region
size (and shape). Practical data acquisition
problems may limit the region size.



Furthermore, exposure and outcome data may
be available for different regions.

Region Shape
 When one assesses exposure to a single

pollution source, and one assumes that
distance is a surrogate for exposure, then a
circular region centred on the source yields
the least sampling bias for detecting
directional trends, in that sampling is equal in
all directions. Square, rectangular, or other
polygonal regions do not provide such
unbiasedness. Of course, if the putative
source is not central to the region then a
circular window has no advantage. If
population structure dictates the region shape
and size then a polygonal region may have to
be adopted, although some advanced
statistical techniques can be used to allow for
population sparse regions in regular windows.

 When one examines multiple pollution
sources, a rectangular or polygonal region
should suffice. However, one should make
some effort to provide ‘similar’ sampling
detail in all directions from the sources in



case directional differences are present.

Replication and Controls
Few studies examine replicated realisations
of disease events around pollution sources.

The main use of replication in such studies
should be to provide estimates of variability
not available from single realisations. An
alternative use of replication is to study other
areas where potential pollution sources exist
but where no evidence has been
demonstrated for adverse health links to the
source or sources.
 If substantial hypotheses concerning an

individual source are to be examined then
control areas may be of some use. However,
the use of replication to provide increased
sample size by pooling, without examination
of variability, only provides evidence for
hypotheses concerning the sources in general,
and not as individual sites. Local effects,
which may be ‘unusually’ marked at an
individual site may be swamped in such a
pooled sample.

 In any study of disease incidence within a



population, one must take some account of
population structure. A standard
epidemiological case-control design can be
used where individuals are selected as
controls and matched to cases with respect to
confounding factors (e.g. age and
occupation). Another standard approach in
the conventional analysis of small area count
data involves the use of strata-specific
standardised rates to represent the
‘background’ population effect. The ratio of
observed count to expected count, based on
such a standardisation, can be used as a crude
estimate of region-specific relative risk.

 An alternative approach is to utilise a disease
or group of diseases which is thought to
represent the ‘at risk’ population in the area
but is usually unaffected by the type of
pollution being considered. This approach is
designed for point event data where a
‘background’ point event map of a ‘control’
disease is available. This method could also
be used with count data, where counts of
‘case’ and ‘control’ diseases are available.



 The goal is to find a ‘control’ disease which
affects the same population with respect to
possible confounding variables (e.g. age,
occupation, smoking, etc.) yet is unrelated to
the exposure of interest. While the existence
of such a ‘control disease’ is subject to
epidemiological debate, if such data are
available, the statistical foundation of the
methods is sound.

————————————————————-

A number of studies utilise data based on the
spatial distribution of such diseases to assess
the strength of association with exposure to a
pollution source. Raised incidence near the
source, or directional preference related to a
dominant wind direction may provide
evidence of such a link. Hence, the aim of the
analysis of such data is usually to assess the
effect of specific spatial variables rather than
general spatial statistical modelling. That is,
the analyst is interested in detecting patterns
of events near (or exposed to) the focus and
less concerned about aggregation of events
in other locations. The former type of analysis



has been named ‘focussed clustering’ by
Besag and Newell. The latter is often termed
’non-focussed’ clustering. To date, most
pollution-source studies concentrate on
incidence of a single disease (e.g., childhood
leukaemia around nuclear power stations or
respiratory cancers around waste-product
incinerators).

The types of data observed can vary from
disease-event locations (usually residence
addresses of cases) to counts of disease
(mortality or morbidity) within census tracts or
other arbitrary spatial regions. An example of
a data set consisting of residential locations is
provided in the Armadale figure. The
locations of respiratory cancer cases around
a steel foundry (0,0) in Armadale central
Scotland for the period of 1968-1974. In this
example, the distribution of cases around the
central foundry is to be examined to assess
whether there is evidence for a relation
between the locations and the putative
source (the foundry). In the other figure, the
counts of respiratory cancer for the period of
1978-1983 in Falkirk central Scotland are



displayed. A number of putative sources of
health hazard are located in this area, most
notably an metal processing plant (*).
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Inference Problems
The primary inferential problems arising in
putative-source studies are
 post hoc analyses,
 multiple comparisons.

—————————————————————

The well-known problem of post hoc analysis
arises when prior knowledge of reported
disease incidence near a putative source
leads an investigator to carry out statistical
tests or to fit models to data to ‘confirm’ the
evidence. Essentially, this problem concerns
bias in data collection and prior knowledge of
an apparent effect. Both hypothesis tests and
study-region definition can be biased by this
problem. However, if a study region is
thought a priori to be of interest because it
includes a putative pollution source, one does
not suffer from post hoc analysis problems if
the internal spatial structure of disease
incidence did not influence the choice of
region.

The multiple-comparison problem has been



addressed in several ways. Bonferonni’s
inequality may be used to adjust critical
regions for multiple comparisons but the
conservative nature of such an adjustment is
well known. The use of cumulative p-value
plotting has been proposed to assess the
number of diseases yielding evidence of
association with a particular source. An
alternative approach is to specify a general
model for the incidence of disease or
diseases. Such an approach can often avoid
multiple comparison problems.

Exploratory Techniques
The use of exploratory techniques is
widespread in conventional statistical
analysis. However, in point-source analysis
one must exercise care about how
subsequent analysis is influenced by
exploratory or diagnostic findings. For
example, if exploratory analysis isolates a
cluster of events located near a pollution
source, then this knowledge could lead to a
post hoc analysis problem, namely, inference
based on a model specifically including such



a cluster is suspect.

For case-event data, one can employ
standard point process methods to explore
data structure. For example, the intensity (i.e.
points per unit area) of events can be
mapped and viewed as a contoured surface,
usually using density estimation.

If the intensity of controls is also mapped,
then it is useful to assess whether the cases
demonstrate an excess of events beyond that
demonstrated by the controls (e.g. in areas of
increased risk). Controls could consist of
randomly selected individuals from the
population at risk (perhaps matched on
confounding factors), or a ‘control disease’ as
mentioned above. A higher relative intensity
of ‘cases’ to ‘controls’ near a pollution source,
as compared to far away, may support a
hypothesis of association.



In the case of tract-count data, a variety of
exploratory methods exist. One can use
representation of counts as surfaces and
incorporate expected count standardisation
(e.g. through a standardised
mortality/morbidity ratio (SMR)). While
mapping regional SMRs can help isolate
excess incidence, estimates of SMRs from
counts in small areas are notoriously variable,
especially for areas with few persons at risk.
Various methods have been proposed to
stabilise these small area estimates. Two
different approaches are based on
nonparametric smoothing and empirical
Bayes ‘shrinkage’ estimation.



In general, the use of nonparametric relative
risk estimation, particularly combined with
Monte Carlo evaluation of excess risk, is a
powerful tool for the initial assessment of risk
elevation. Care must be taken, however, not
to prejudice further inference by the a
posteriori focussing of analysis.



Models for Point Data
In this section, we consider a variety of
modelling approaches available when data
are recorded as a point map of disease case
events.
 Event locations often represent residential

addresses of cases and take place in a
heterogeneous population that varies both in
spatial density and in susceptibility to
disease.

 Define the first-order intensity function of the
process as x, which represents the mean
number of events per unit area (local density)
in the neighbourhood of location x. This
intensity may be parameterised as :

x  .gx. fx;
where gx is the ‘background’ intensity of
the population at risk at x, and fx; is a
parameterised function of risk relative to the
location of the pollution source. The focus of
interest for assessing associations between
events and the source is inference regarding
parameters in fx;, treating gx as a



nuisance function. The log-likelihood of m
events in Athe study region), conditional on
m, is (bar a constant) :


i1

m

log fxi;  m log
A
gx fx;dx.

Here, parameters in fx; must be estimated
as well as gx.
 Inferential problems arise when gx is

estimated as a function and then apparently
regarded as constant in subsequent inference
concerning x. One solution to this problem
is to incorporate the estimation of the
background smoothing constant in gx, by
the use of a prior.

The specification of fx;
It is important to consider the appropriate
form for the function fx;, which usually
describes the exposure model used in the
analysis of the association of events to a
source. Define the location of the source as
x0. Usually the spatial relation between the
source and disease events is based on the



polar coordinates of events from the source:
r,,where r  x  x0, and  is the angle
measured to the source. It is important to
consider how these polar coordinates can be
used in models describing pollution effects on
surrounding populations.
 In many studies, only the distance measure ( r

) has been used as evidence for association
between a source and surrounding
populations. However, it is dangerous to
pursue distance-only analyses, when
considerable directional effects are present.
The reason for this is based on elementary
exposure modelling ideas, which are
confirmed by more formal theoretical and
empirical exposure studies. It is clear, that
differential exposure may occur with change
in distance and direction, particularly around
air pollution sources (such as incinerator
stacks or foundry chimneys). Indeed the wind
regime which is prevalent in the vicinity of a
source can easily produce considerable
differences in exposure in different
directions. Such directional preference or



anisotropy can lead to marked differences in
exposure in different directions and hence to
different distance exposure profiles. Hence
the collapsing of exposure over the
directional marginal of the distribution could
lead to considerable mis-interpretation, and in
the extreme to Simpson’s paradox. In the
extreme case, a strong distance relationship
with a source may be masked by the
collapsing over directions, and this can lead
to erroneous conclusions.

 The importance of the examination of a range
of possible indicators of association between
sources and health risk in their vicinity is
clear. The first criterion for association is
usually assumed to be evidence of a decline
in disease incidence with increased distance
from the source. Without this
distance-decline effect, there is likely to be
only weak support for an association.
However, this does not imply that this effect
should be examined in isolation. As noted
above, other effects can provide evidence for
association, or could be nuisance effects
which should be taken into consideration so



that correct inferences be made. In the former
category are directional and
directional-distance correlation effects, which
can be marked with particular wind regimes.
In the latter category are peaked incidence
effects, which relate to increases of incidence
with distance from the source. While a peak
at some distance from a source can occur, it is
also possible for this to be combined with an
overall underlying decline in incidence, and
hence is of importance in any modelling
approach. This peaked effect is a nuisance
effect, in terms of association, but it is clearly
important to include such effects. If they were
not included then inference may be
erroneously made that no distance-decline is
present, when in fact a combination of
distance-decline and peaked incidence is
found. Further nuisance effects which may be
of concern are e.g. random effects related to
individual frailty, where individual variation
of susceptibility is directly modelled or where
general heterogeneity is admitted.

 A general approach to modelling exposure
risk is to include an appropriate selection of



the above measures in the specification of
fx; . . First it is appropriate to consider how
exposure variables can be linked to the
background intensity gx. We define
fx;  mfx , where m. is an
appropriate link function, and fx represents
the design matrix of exposure variables which
is evaluated at x. The link function is usually
defined as m.  1  exp., although a
direct multiplicative link can also be used.
Usually each row of fx will consist of a
selection of the variables

r, logr, cos, sin, r cos,

r sin, logrcos, logr sin.

 The first four variables represent
distance-decline, peakedness, and directional
effects, while the latter variables are
directional-distance correlation effects. The
directional components can be fitted
separately and transformations of parameters
can be made to yield corresponding
directional concentration and mean angle.
The figure below displays different
distance-related exposure models which



could be used to specify fx;. Note that
nuisance effects of peakedness and
heterogeneity appear in b) and c).

distance distance distance
a b c

Distance-risk relationships
 Further examination of dispersal models for

air pollution, suggest that the spatial
distribution of outfall around a source is
likely to follow a convolution of Gaussian
distributions where in any particular direction
there could be a separate mean level and
lateral variance of concentration (dependent
on r).

 As a parsimonious representation of these
effects it is possible to use a subset of the
exposure variables listed above to describe



this behaviour. The following figure displays
the result of a simulation for a model which
involves both peaked and distance-decline
components and directional preference.
Time-averaged exposure can be thought to
lead to patterns similar to that depicted. Here
a NW direction of concentration is apparent
and the simulated exposure intensity surface
was obtained from a 5 parameter model for
the distance and directional components.
Note that averaging over the directional
marginal of this distribution will lead to
considerable attenuation of increased risk at
distance from the source due to the
anisotropic distance relations found.
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Estimation
The parameters of the models discussed
above, can be estimated by maximum
likelihood, conditional on gx. In fact, it is
possible to use GLIM or S-PLUS for such
model fitting. Bayesian models can be
sampled using MCMC methods.

Hypothesis Tests
Note that both likelihood-ratio (LR) and score
tests are available in statistical software
packages (such as GLIM, GENSTAT or
S-PLUS).



 Tests of monotonic radial decline assume that
distance acts as a surrogate for exposure.
Many proposed tests are based on radial
decline models in point data and tract-count
data. Simple radial decline tests can have low
power when nonmonotone effects, such as
those discussed above, are present.

 The collection of data and spatial modelling
of exposure levels should lead to increased
power to detect pollution effects. Unobserved
heterogeneity may be included as random
effects following the generalized linear mixed
models. Alternatively, the heterogeneity may
be formulated in terms of nuisance
parameters. Lawson and Harrington (1996)
examined Monte Carlo tests, in a putative
source setting, when spatial correlation is
present and can be estimated as a nuisance
effect under the null hypothesis.

Models for count data
For a variety of reasons, outcome data may
be available only as counts for small census
regions rather than as precise event
locations. As a result, a considerable



literature has developed concerning the
analysis of such data.
 Analysis based on regional counts is

ecological in nature and inference can suffer
from the well-known ‘ecologic fallacy’ of
attributing effects observed in aggregate to
individuals.

 extreme sparseness in the data (i.e., large
numbers of zero counts) can lead to a
bimodal marginal distribution of counts or
invalidate asymptotic sampling distributions.

While the above factors should be taken into
consideration, the independent Poisson
model may be a useful starting point from
which to examine effects of pollution sources.
Often, a log-linear model parameterisation is
used, with a modulating value ei, say, which
acts as the contribution of the population of
subregion i to the expected deaths in
subregion i, i  1, , p. Usually the expected
count is modelled as

Eni  i  ei.mfi
, i  1, . . . ,p.

Here, the ei, i  1, , p, act as a background
rate for the i-th subregion. The function m



represents a link to spatial and other
covariates in the p  q design matrix F, whose
rows are f1

 , . . . , fp
 . The parameter vector  has

dimension q  1. Define the polar coordinates
of the subregion centre as ri, i, relative to
the pollution source. Often, the only variable
to be included in F is r, the radial distance
from the source. When this is used alone, an
additive link such as m  1  exp. , is
appropriate since (for radial distance decline)
the background rate (ei) is unaltered at great
distances. However, directional variables
(e.g., cos, sin, r cos, logrcos, etc.)
representing preferred direction and
angular-linear correlation can also be useful
in detecting directional preference resulting
from preferred directions of pollution outfall.

This model may be extended to include
unobserved heterogeneity between regions
by introducing a prior distribution for the log
relative risks (logi, i  1, , p). This could
be defined to include spatially uncorrelated or
correlated heterogeneity. The empirical and
full Bayes methods described above often



take this approach.

Estimation
One may estimate the parameters of the
log-linear model above, via maximum
likelihood through standard GLM packages,
such as GLIM or S-PLUS. Using GLIM, the
known log of the background hazard for each
subregions, {log(ei, i  1, , p, is treated
as an ‘offset’. A multiplicative (log) link can be
directly modelled in this way, while an
additive link can be programmed via
user-defined macros.

Log-linear models are appropriate if due care
is taken to examine whether model
assumptions are met. For example,
Lawson(1993) suggests the use of Monte
Carlo tests for goodness of fit. If a model fits
well, then the standardised model residuals
should be approximately independently and
identically distributed (i.i.d.). One may use
autocorrelation tests, again via Monte Carlo,
and make any required model adjustments. If
such residuals are not available directly, then



it is always possible to compare crude model
residuals to a simulation envelope of m sets
of residuals generated from the fitted model
(parametric bootstrap).

Bayesian models for count data can be
posterior-sampled via MCMC methods, and a
variety of approximations are also available to
provide empirical Bayes estimates.

Hypothesis Tests
Most of the existing literature on regional
counts of health effects of pollution sources is
based on hypothesis testing. Stone (1988)
first outlined tests specifically designed for
count data of events around a pollution
source. These tests are based on the ratio of
observed to expected counts cumulated over
distance from a pollution source. The tests
are based on the assumption of independent
Poisson counts with monotonic distance
ordering. A number of case studies have
been based on these tests.
 While Stone’s test is based on traditional

epidemiologic estimates (i.e. SMRs), the test



is not uniformly most powerful (UMP) for a
monotonic trend. If a UMP test exists, it is a
score test for particular clustering alternative
hypotheses. Unfortunately, these forms of
alternative commonly arise in small-area
epidemiological studies.

 Lawson(1993) developed a distance-effect
score test versus a non-monotone, peaked
alternative, and also suggested tests for
directional and directional-distance effects
within a log-linear model framework.

A cautionary note should be sounded in
relation to the use of tests for putative source
locations. The results of recent power studies
carried out on a range of distance-decline
tests have shown that:
. . . .many current tests of focussed clustering

often have poor power for detecting

the small increases in risk

often associated with environmental exposures’

This supports the fundamental need to
examine a range of approaches to putative



sources analysis within one study as well as
a range of association variables.



Modelling versus
Hypothesis Testing



Conclusions
 The analysis of small area health data around

putative hazard sources has developed now to
a stage where some basic issues are resolved
and basic methods are in place.

 There is still considerable lack of agreement
on a number of key issues relating to basic
methods and also a number of
underdeveloped areas worthy of further
consideration.

 Perhaps the most contentious area of basic
methodology is that of exposure modelling
and how this should be carried out in the
small area context. I believe that some degree
of sophistication in exposure modelling
should be attempted, as naive use of simple
exposure models (e.g. distance-only models)
can lead to erroneous conclusions.

 Both directional and distance-related effects
should be included in any analysis, unless
there are good reasons not to do so.

Armadale example
 49 cases of respiratory cancer in Armadale,



central Scotland in a six year period
 CHD control disease available as well as 18

expected rates
 Study region defined by the town limits
 Case event analysis carried out using point

process models and extraction mapping
Results

parameter CHD control

grand mean 2.78 (0.207)

r -

cos -0.935 (0.275)

sin -0.331 (0.217)

rcos -

r sin -

null Deviance 92 (78)

Deviance (df) 73 (76)

AIC 583.6

Armadale: results

The results suggest that there is no distance



decline effect but a directional effect. This
may be due to the large extraction peak
extending into the south-west of the area.



Session: The

Armadale Example:a
Case Study in
Environmental
Epidemiology

Background



 Armadale is a small industrial town in
central Scotland

 During 1968-1974 a large increase in
respiratory cancer (ICD code 162) mortality
was recorded

 It was dubbed the Armadale Epidemic
 Early-mid 1960s : a local foundry in central

Armadale had operated new industrial
processes, including ore boiling

 Increase in cancer risk hypothesised to be



linked to emissions from the central foundry
 Unusually short latency period for this cancer

was hypothesised to be related to tumour
promoters being emitted by the foundry

 Respiratory cancer reduced considerably after
1974......this appears to be related to changes
in air pollution controls at the foundry.

 Spatial distribution of the disease may help to
assess the link to a source.

The Data Example
 In the period of study (1968-1974) 49 deaths

occurred. This is a large number for such a
small town. A retrospective questionnaire
survey established that these deaths were not
lifestyle-related or occupational in nature.



Armadale: case event locations
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Armadale: control event locations
 A control disease (coronary heart disease:

CHD) was used as a control for respiratory
cancer

 Question of matching?

Exploratory Methods
 extraction mapping: relative risk assessment
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Extraction map of Armadale

Armadale extraction surface (CHD)
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Modelling and Hypothesis Testing
 models can have distance and directional

components
 A general approach to modelling exposure

risk is to include an appropriate selection of
measures in the specification of fx; . . First it
is appropriate to consider how exposure
variables can be linked to the background
intensity gx. We define
fx;  mfx , where m. is an
appropriate link function, and fx represents
the design matrix of exposure variables which
is evaluated at x. The link function is usually
defined as m.  1  exp., although a
direct multiplicative link can also be used.
Usually each row of fx will consist of a
selection of the variables

r, logr, cos, sin, r cos, r sin.

The first four variables represent
distance-decline, peakedness, and directional
effects, while the latter variables are
directional-distance correlation effects
Results



parameter CHD control

grand mean 2.78 (0.207)

r -

cos -0.935 (0.275)

sin -0.331 (0.217)

rcos -

r sin -

null Deviance 92 (78)

Deviance (df) 73 (76)

AIC 583.6

Armadale: results

 The above results are for CHD control and
the best subset model for any of the distance
and angular variables specified.

 Only the directional terms are significant, and
the grand mean.

 This suggests that distance is not a significant
contributor



parameter expected deaths

grand mean 3.064 (0.405)

r 0.034 (0.018)

cos -

sin -

rcos -0.001 (0.014)

r sin -0.02 (0.008)

null Deviance 77 (78)

Deviance (df) 73 (76)

AIC 583.6

Armadale: expected death

 If expected deaths in 18 census districts are

used instead of CHD then a different picture
emerges. There is still no distance decline but
a different directional effect appears.

 What if we include heterogeneity
(uncorrelated and correlated)...does this make
a difference



 The results of such an analysis (reported
elsewhere) suggest that a model including a
distance effect is relevant and some
directional components are also present, once
the unobserved heterogeneity is accounted
for. There is a strong indication that
uncorrelated heterogeneity is present
although there appears to be little evidence of
autocorrelation here

—————————————————————

Issues
1) choice of control

2) sensitivity to smoothing

3) evidence of a link

4) data quality

5) disease to study



Open Questions
 edge effects

- what happens at edges?
 smoothing

-is it necessary?
 random effects

-related to smoothing: are they necessary?
 public health implications of mapping:

-maps, clusters, ecological analysis
 the need for space-time methods and

surveillance
-what about the dynamic picture?
 epidemic modelling?




