
Some notes on Statistical Models
Case Event Data

• It is reasonable to assume that at a residential location x the probability
of observing a case is independent of such a probability at other locations.
This will at least hold true conditionally, given knowledge of a spectrum
of ancillary information (covariates and other spatial structure informa-
tion).This model assumption essentially regards individuals as having an
independent probability of becoming a case.

• In addition to conditional independence of case events, it is possible to
include both heterogeneous background and non-stationarity or long-range
spatial trend components in our models by adopting a special type of
Poisson process model.

• A heterogeneous Poisson process (HEPP) model is a simple extension of
the Homogeneous Poisson process where first-order intensity λ, is allowed
to be spatially dependent (λ(x)).

For this case, the expected number of events in an area T , say, is now :

E{n(T )} =
Z
T

λ(u)du. (1)

The definition of λ(x) is quite flexible and allows the inclusion of a modulat-
ing function which can represent the heterogeneous (population) background,
and also covariate information. In addition, any realization of m events in T
has likelihood:

mY
i=1

λ(xi).e
− R

T
λ(u)du. (2)

• This is the unconditional likelihood for a realization of m events in T . The
number of events (m) is Poisson distributed with parameter ρ. It is also
important to note that the likelihood 2, can be simplified by conditioning
on the realized value ofm. This may be useful when we are only concerned
with the spatial structure of events and not the overall intensity (which
is characterised by the realized value of m).This conditioning leads to the
likelihood:

mY
i=1

λ(xi).{
Z
T

λ(u)du}−m. (3)

Note that if a constant intensity parameter (ρ) is included in the parame-
terization of λ(x), then this factors out of 3, and greater parsimony is a result.
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• The inclusion of population background in the above models is usually
achieved by defining an extra modulating component in λ(x). A basic
formulation for the modulated intensity is

λ(x) = g(x).m(F (x).α) (4)

where g(x) is a function of the ‘at risk’ population distribution, and F (.) is an
n× p (spatially-dependent) design matrix of spatial and non-spatial covariates,
α is a p × 1 vector of parameters. The function F (x) represents the design
matrix evaluated at the location x.

• The function m(.) is usually included to provide a flexible link between
the background population-induced intensity and covariates included in
the design matrix F . Some possibilities are defined in Table 1.

Table 1: Some link types for Hepp models

m(F (x).α) link
F (x).α multiplicative-identity

exp(F (x).α) multiplicative-log
1+F (x).α additive-identity

1+exp(F (x).α) additive-log

Note that a scaling parameter can be included in the specification of F which
allows the covariate contribution to be separately scaled, from the background
intensity.

• The link functions defined in Table 1 represent a range of possible ef-
fects which may be thought relevant in the relation of disease incidence
to background rate. The multiplicative models represented by the first
two entries require that g(x) is directly related to any change in disease
incidence, and further that the change is proportional to the background
rate.

• For some applications this specification may not be realistic. In some cases
where the disease concerned can be regarded as adding to the background
propensity then the last two links may be more appropriate.

• In fact the additive-log link has a number of significant advantages in
applications where it is important to maintain background risk where there
is negligible excess risk predicted and the log component ensures positivity.
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• This type of link has been applied in the analysis of putative sources of
health hazard. It is not always clear a priori, however, which of these
links is appropriate in any given situation, and in that case it may be
appropriate to examine a range or family of link functions to determine
the best specification. It may be appropriate to consider such a range of
models in any particular application.

• In the original definition of λ(x), the background g(x) function appears
in the likelihood, and hence must be estimable at the case event locations
{xi}. This implies that the ‘at-risk’ population must be able to be in-
terpolated to the case locations,. if not already available and measured
at these sites. This assumption has implications for the epidemiological
interpretation of this model.

• First, the assumption of a continuous g(x) background over a study re-
gion may require re-specification if areas of no population occur within
the study window. Although this consideration relates to the method of
estimation of g(x), the issue is related to the ‘ecological fallacy’.

• The ecological fallacy can occur “ when a suspected risk factor and disease
are associated at the population level, but not at the individual subject
level” .

• This can also apply to the use of a population background function g(x)
used to describe the probability of an individual case at x.

• In general, the problem can be interpreted as the attribution of average
characteristics to an individual within a region. Evidently, individuals
rarely display such ‘average’ characteristics, but randomly varying ideo-
graphic features.

0.0.1 The g(x) estimation problem

• The function g(x),as defined here, is a spatially continuous function repre-
senting the propensity of the local population towards contraction of the
given case disease. This is termed the ‘at-risk’ structure of the population.
As this function appears within the intensity 4, it must be included in any
analysis of this intensity function. Hence, either: 1) g(x) must be esti-
mated and this estimate must also be capable of interpolation to a variety
of spatial locations (including the observed case locations {xi}); or 2) g(x)
must be removed from the problem. In the first case, g(x) can be estimated
prior to analysis of parameters in m(.),in which case inference concerning
these latter parameters would be made conditional on the estimated value
of g(x), bg(x) say. This could lead to a type of profile likelihood analy-
sis of m(.). An alternative approach could be to include g(x) estimation
within a general procedure which explores the interaction between g(x)
estimation and m(.) estimation. The disadvantage of the profile approach
is that it could lead to estimates of α which are sensitive to the value and
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variability of bg(x). These developments were in the analysis of small area
health data around putative sources of health hazard, but the methods
have wide applicability in situations where the ‘at-risk’ population related
to a realization of case events has to be estimated.

• The second approach to the function g(x), that of removal from the prob-
lem, can be accomplished in a variety of ways. First, it could be possible
to integrate g(x) out of the intensity and use the resulting integrated in-
tensity (λ∗(x)) in further analysis. An alternative approach, which is only
available when another case event map is used to estimate g(x), is to con-
dition on the realization of case/control marks on the two disease map
locations. This leads to a binary logistic regression and g(x) is factored
out of the analysis. The advantage of this approach is that it does not
require any knowledge of, or manipulation of the g(x) function. The dis-
advantage is that it is limited to situations where two disease maps are
available.

• Methods for the estimation of g(x) require that data be available which
describe the ‘at-risk’ structure of the population. Traditionally when ex-
amining counts of disease within small areas, use is frequently made of a
standardized rate for each region, which is calculated from known regional
or national rates for the case disease. This is usually scaled by the popula-
tion structure of the region to allow for local effects. This standardization
is readily available at census tract level in many countries. However, it is
often only available at an aggregate level and hence at a level of aggre-
gation above that of case event data. Instead of utilizing such data, it is
possible to use a surrogate measure which is available at the case event
resolution level. It has been proposed that a mapped realization of an-
other disease could be used to represent the ‘at-risk’ population structure
which must be controlled for in the analysis of case disease data. this addi-
tional disease map is used as a spatial ‘control’ for the case disease and in
principal should be matched closely to the population affected by the case
disease, but unaffected by the case effects under study. For instance, in a
study of clustering of a cancer (case disease) it may be thought appropri-
ate to use coronary heart disease (CHD) as a control disease. If the cancer
affects similar ages and sexes in the population then any excess clustering
in the cancer will be apparent above the local variation in CHD. In the
original work, a two dimensional kernel density estimate was used to in-
terpolate the control disease to the case data points. Subsequent inference
was made conditional on the value of bg(x) found optimally by cross vali-
dation of the kernel bandwidth smoothing parameter. However,there are
drawbacks to the use of such control diseases, which limit their usefulness
as a general panacea in this case. First, the problem of false accuracy
of the residential address of the control could lead to misinterpretation.
For example, a control disease could be related to factors which are not
strongly related to the spatial address structure of the case disease. Hence
in this case the only argument for the use of such a control is the aggregate
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relevance of the spatial expression. In addition the idea that such controls
can be interpolated to case data points is also an assumption which should
be verified.

• Diggle and Rowlingson (1994) have suggested an approach which ‘fac-
tors out’ the g(x) function from the analysis. This conditional approach
directly models the probability of a location being a case rather than a
control, given the joint realization of cases and controls. This leads to a
different joint likelihood for the case and control data, but conditions the
analysis on the observed pattern.

• Given the joint intensity of cases and controls is g(x)+g(x).m(Fα),define
the probability of a case at x as :

P (x) =
g(x).m(Fα)

g(x) + g(x).m(Fα)
=

m(Fα)

1 +m(Fα)
(5)

then the conditional likelihood of a joint realization of cases and controls is
given by

L =
mY
i=1

{ m(Fiα)

1 +m(Fiα)
}.

m+nY
j=m+1

{1− m(Fjα)

1 +m(Fjα)
} (6)

where there are m cases and n controls.

• While there are many benefits to this approach, not least of which is the
fact that g(x) does not require to be estimated and window boundaries no
longer need be considered, it remains limited by the fact that it requires
the use of a control point map, which, as noted above, has a number of
significant drawbacks. If, in addition, only aggregate level standardized
rates are available then it cannot be used.

0.0.2 Matched case control modelling

• In most of the models considered above the ‘at risk’ population background
was assumed to be represented by a continuous function g(x). In that case
the use of control diseases or other expected rate estimators does not allow
the inclusion of information about individuals who are matched to the case
on selected criteria but who have not expressed the disease.

• Such matching is fundamental to matched case control studies in epidemi-
ology and the usefulness of such individual controls is clear.

• It is possible to define a conditional probability of a particular location,
xj0 being a case, given the occurrence of the case-control location pair xj0
and xj1. This probability is

pjo =
m(F (xj0)α)

m(F (xj0)α) +m(F (xj1)α)
.
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• It is possible to construct a likelihood based on this derivation, and also
to extend the derivation to multiple matched controls
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Count Data

• We assume that given m tracts, the count nj within each tract is observed
for a fixed time period. Based on the assumptions used to define the case
event Poisson process model, it is possible to derive basic model results
for counts in tracts. Assuming an underlying modulated heterogeneous
Poisson process model for case events,then it is known that for such a
process, counts of events within disjoint subregions of the process are
independent and the expected count in the j th tract is

E{nj} =
Z
aj

λ(u)du. (7)

• In addition, it is also the case that the counts in these regions are Poisson
distributed with expectation given by 7.

• This model implies that within a realization of counts in m regions, the
tract counts are independent Poisson distributed with expectation and
variance equal to 7. Define the integral in 7 as λj for brevity. The likeli-
hood of m tract counts is then

L =
mY
j=1

(
λ
nj
j .e

−λj

nj!

)
(8)

and log-likelihood (bar a constant involving only the data), is

l =
mX
j=1

nj log(λj)−
mX
j=1

λj . (9)

• This also implies that, conditional on nT =
Pm
j=1 nj , the total sum of the

tract counts (the window or region total), that the counts in tracts have
a multinomial distribution with likelihood given by

Lcond =
mY
j=1

Ã
λjPm
j=1 λj

!nj
. (10)

• These likelihoods (8), (10) mirror the unconditional and conditional like-
lihoods found for the case event situation. In principle it is possible to use
these models as a basis for the analysis of count data found in arbitrary
regions.

• Given the general availability of software for fitting discrete data likeli-
hoods such as the Poisson (e.g. R, S-plus, Minitab), it is surprising that
many examples of count data analysis employ approximations to the like-
lihoods.
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• the favoured method is to assume λj is a constant within tracts

The Parameterization of λj

• The definition of the λj can follow as for case events. Assuming a constant
rate:

λj = E(nj} = ρ.ej .θj

• Here θj is the relative risk in the j th tract
• ej is the expected rate in the j th tract
• ρ is a constant overall rate.
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Log-linear Models

• What happens when we assume a E(nj} = ρ.ej .θj and a Poisson likeli-
hood?

• l =Pm
j=1 nj log(λj)−

Pm
j=1 λj gives

l =
mX
j=1

nj log(ρ.ej .θj)−
mX
j=1

ρ.ej .θj

=
mX
j=1

nj log(ρ) +
mX
j=1

nj log(ej) +
mX
j=1

nj log(θj)

−ρ
mX
j=1

ej .θj

• If we redefine the intensity ρ.ej .θj = ej .θj and allow the θj to include a
constant term, then we can write:

mX
j=1

nj log(ej) +
mX
j=1

nj log(θj)

−
mX
j=1

ej .θj
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Models for the Relative Risk

1) θj = exp(β0) : constant risk model leads to

l =
mX
j=1

nj log(ej) + β0

mX
j=1

nj

−
mX
j=1

ej . exp(β0)

2) θj = exp(β0 + β1xj) where xj is a covariate. Then
log(θj)=β0 + β1xj .
3) In general, for a design matrix of p covariates x and a p × 1 parameter

vector β then
log(θj) = xjβ

where xj is the j th row of the design matrix. This is known as a log-linear
model.

l =
mX
j=1

nj log(ej) +
mX
j=1

xjβ

−
mX
j=1

ej . exp(xjβ)

This just like a simple regression model where nj is the dependent variable.
In addition the ej is a fixed effect and we call log(ej) the log offset. It is included
but not with a parameter and is fixed.
4) On various packages we can fit these log-linear models as long as there

is a Poisson regression or log-linear modeling or generalised linear modelling
facility. On SAS Proc Genmod or Catmod can be used. On R or S-Plus the glm
function can be used.
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