
Case event data 
 Count data is the commonest format found in spatial 

epidemiology 
 However this is just an aggregation of case event data 

where the (residential) location of a case of disease is 
the primary data focus

 Often case event data is important when small spatial 
scales are of interest (1-10kms for example)
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Example: larynx cancer in NW England
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Case event notation 
 Define the study area as T
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Control disease 
 Usually the cases have associated with them a control 

disease realization 
 This is used as a geographical control for the case 

distribution (acting like a expected count in the count 
data examples) 
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Control: lung cancer 
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Control notation 

 Hence we treat the controls and cases as one vector of 
length m+n
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Case event Models 
 Natural models are Point processes
 Both cases and controls can be assumed to have 

Poisson point process (PPP) models governed by an 
intensity function
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Case Event Direct Modeling
 Bayesian modeling of PPPs can be achieved directly 

(but not conveniently as an integral must be 
approximated) 
 Berman-Turner Approximation is useful
 See Lawson (2006) ch 8, Section 8.4.3 and WinBUGS 

code in Appendix c.4.5 
 (in participant files: zeroes_PP…odc)

 We don’t pursue this here 
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Conditional Logistic models 
 Instead we use CONDITIONING to give us a simpler 

labeling approach
 Intensity of the case and control events is defined to be 
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Conditional Logistic models

 Hence, yi is 1 for case and 0 for a control
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Assume that the complete vector is used for a binary label
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Logistic spatial models
 Then:

 This is just a logistic regression formulation 
 Hence as long as you have covariate information at the 

locations of controls and cases you can assume a 
conditional logistic spatial model 
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Logistic Spatial models 
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1   ( ) exp( )
  is just a linear predictor at the site locations

 can be individual covariates (age, gender etc) 
or 
spatially specific (e.g. pollution measure, distance from a 
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Typical example 
 Location (s), distance from a pollution source (d), age 

(x) as variables must be available for all cases and 
controls 
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Addition of Random effects 
 It is easy to add various types of REs
 UH  can be added via an individual level zero 

mean Gaussian effect:V~N(0,tau)
 CH is slightly different: A CAR model cannot be 

simply applied here
 Can use a CAR if you can defined neighborhoods?
 Otherwise must use a full MVN geostatistical 

model  
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Spatial.exp 
 For point referenced data (i. e. measures made at 

locations) we can specify an effect such that :
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Bayesian Geostatistical models 
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 Note: the spatial correlation effect has zero mean
 The spatial.exp model is available on WinBUGS
 Related to log Gaussian Cox processes



Alternative spatial structures
 Spatial.exp is very sensitive to sample size, 
 It is very slow: inversion of NxN matrix at each 

iteration 
 It is sensitive to structure of sampling mesh 

(singularities)
 Alternative: choose natural neighbors and 

consider intrinsic CAR?  Much simpler 
 Possible via Delauney triangulation 

©Andrew B. Lawson 2016



Delauney Neighbors
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X   0.1 0.2 0.4 0.45 0.6 0.3
Y   0.1 0.3 0.7 0.2 0.7 0.4
Num     2 4 3 4 3 4



Example
 Larynx and lung cancer (NW England)
 Dataset: larynx_cas_con_Idis.txt
Variables: x, y, ind, dis, age
 Code file: logistic_case_con_bern_AGE.odc
 Using Delauney neighbors to define adjacencies
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Models
DIC            pD

 I   D only    447.45    0.44
 II  D+V 439.74    41.12
 III D+V+A 366.67    89.01
 IV D+A 444.69    1.82
 V  D+V+U 447.4      5.67
 VI D+V+U+A 352.94    118.10

Lowest DIC is model VI

 D: distance; V: UH; U: CH; A: age
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Model VI results

gam1 sample: 2000
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