
Case event data 
 Count data is the commonest format found in spatial 

epidemiology 
 However this is just an aggregation of case event data 

where the (residential) location of a case of disease is 
the primary data focus

 Often case event data is important when small spatial 
scales are of interest (1-10kms for example)
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Example: larynx cancer in NW England
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Case event notation 
 Define the study area as T
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Control disease 
 Usually the cases have associated with them a control 

disease realization 
 This is used as a geographical control for the case 

distribution (acting like a expected count in the count 
data examples) 

©Andrew B. Lawson 2016



©Andrew B. Lawson 2016

Control: lung cancer 
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Control notation 

 Hence we treat the controls and cases as one vector of 
length m+n
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Case event Models 
 Natural models are Point processes
 Both cases and controls can be assumed to have 

Poisson point process (PPP) models governed by an 
intensity function
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Case Event Direct Modeling
 Bayesian modeling of PPPs can be achieved directly 

(but not conveniently as an integral must be 
approximated) 
 Berman-Turner Approximation is useful
 See Lawson (2006) ch 8, Section 8.4.3 and WinBUGS 

code in Appendix c.4.5 
 (in participant files: zeroes_PP…odc)

 We don’t pursue this here 
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Conditional Logistic models 
 Instead we use CONDITIONING to give us a simpler 

labeling approach
 Intensity of the case and control events is defined to be 
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Conditional Logistic models

 Hence, yi is 1 for case and 0 for a control
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Logistic spatial models
 Then:

 This is just a logistic regression formulation 
 Hence as long as you have covariate information at the 

locations of controls and cases you can assume a 
conditional logistic spatial model 
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Logistic Spatial models 
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1   ( ) exp( )
  is just a linear predictor at the site locations

 can be individual covariates (age, gender etc) 
or 
spatially specific (e.g. pollution measure, distance from a 
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The linear predictor can include random effects also.



Typical example 
 Location (s), distance from a pollution source (d), age 

(x) as variables must be available for all cases and 
controls 
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Addition of Random effects 
 It is easy to add various types of REs
 UH  can be added via an individual level zero 

mean Gaussian effect:V~N(0,tau)
 CH is slightly different: A CAR model cannot be 

simply applied here
 Can use a CAR if you can defined neighborhoods?
 Otherwise must use a full MVN geostatistical 

model  
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Spatial.exp 
 For point referenced data (i. e. measures made at 

locations) we can specify an effect such that :
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Bayesian Geostatistical models 
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 Note: the spatial correlation effect has zero mean
 The spatial.exp model is available on WinBUGS
 Related to log Gaussian Cox processes



Alternative spatial structures
 Spatial.exp is very sensitive to sample size, 
 It is very slow: inversion of NxN matrix at each 

iteration 
 It is sensitive to structure of sampling mesh 

(singularities)
 Alternative: choose natural neighbors and 

consider intrinsic CAR?  Much simpler 
 Possible via Delauney triangulation 
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Delauney Neighbors
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X   0.1 0.2 0.4 0.45 0.6 0.3
Y   0.1 0.3 0.7 0.2 0.7 0.4
Num     2 4 3 4 3 4



Example
 Larynx and lung cancer (NW England)
 Dataset: larynx_cas_con_Idis.txt
Variables: x, y, ind, dis, age
 Code file: logistic_case_con_bern_AGE.odc
 Using Delauney neighbors to define adjacencies
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Models
DIC            pD

 I   D only    447.45    0.44
 II  D+V 439.74    41.12
 III D+V+A 366.67    89.01
 IV D+A 444.69    1.82
 V  D+V+U 447.4      5.67
 VI D+V+U+A 352.94    118.10

Lowest DIC is model VI

 D: distance; V: UH; U: CH; A: age
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Model VI results

gam1 sample: 2000
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