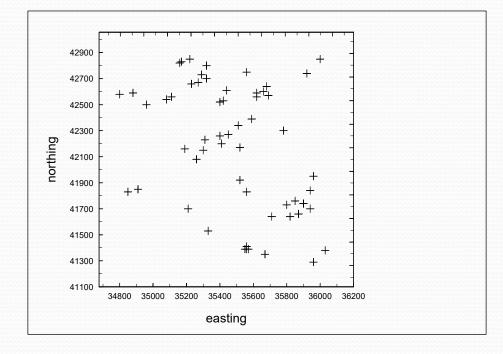
Case event data

- Count data is the commonest format found in spatial epidemiology
- However this is just an aggregation of case event data where the (residential) location of a case of disease is the primary data focus
- Often case event data is important when small spatial scales are of interest (1-10kms for example)

Example: larynx cancer in NW England



Case event notation

• Define the study area as T

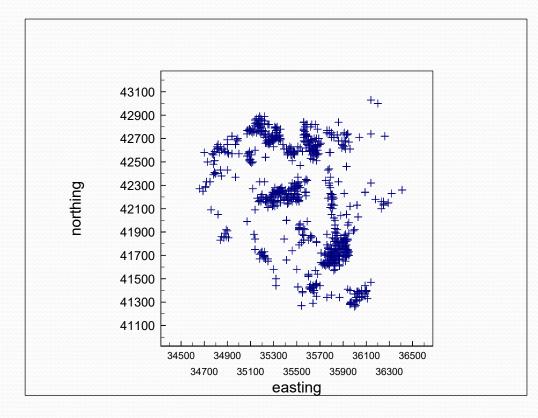
 s_i : x,y coordinate pair of the *i* the location *m* events in T

$$\{s_i\}, i = 1, ..., m$$

Control disease

- Usually the cases have associated with them a control disease realization
- This is used as a geographical control for the case distribution (acting like a expected count in the count data examples)

Control: lung cancer



Control notation

n control locations in T $\{s_j\}, j = m+1, m+n$

 Hence we treat the controls and cases as one vector of length *m*+*n*

Case event Models

- Natural models are Point processes
- Both cases and controls can be assumed to have Poisson point process (PPP) models governed by an intensity function

Case Event Direct Modeling

- Bayesian modeling of PPPs can be achieved directly (but not conveniently as an integral must be approximated)
 - Berman-Turner Approximation is useful
 - See Lawson (2006) ch 8, Section 8.4.3 and WinBUGS code in Appendix c.4.5
 - (in participant files: zeroes_PP...odc)
- We don't pursue this here

Conditional Logistic models

- Instead we use CONDITIONING to give us a simpler labeling approach
- Intensity of the case and control events is defined to be

control : $\lambda_0(s)$ case : $\lambda_0(s)\lambda_1(s)$ modeled part: $\lambda_1(s) = \exp(\eta(s))$

Conditional Logistic models

Assume that the complete vector is used for a binary label so that

$$\mathbf{y}_i = \begin{cases} 1 & \text{if } \mathbf{s}_i \in \{\mathbf{s}_i\}, \ i = 1, \dots, m \\ 0 & \text{otherwise} \end{cases}$$

• Hence, y_i is 1 for case and 0 for a control

Logistic spatial models

• Then:

 $y_{i} \sim Bern(p_{i})$ $p_{i} = \frac{\lambda_{1}(s_{i})}{1 + \lambda_{1}(s_{i})}$ If $\lambda_{1}(s_{i}) = \exp(x'_{i}\beta)$ where $x'_{i}\beta$ is a linear predictor

- This is just a logistic regression formulation
- Hence as long as you have covariate information at the locations of controls and cases you can assume a conditional logistic spatial model

Logistic Spatial models

As long as $\lambda_1(s_i) = \exp(x_i'\beta)$

then $x_i^{\beta}\beta$ is just a linear predictor at the site locations $x_i^{\beta}\beta$ can be individual covariates (age, gender etc) or

spatially specific (e.g. pollution measure, distance from a source).

The linear predictor can include random effects also.

Typical example

 Location (s), distance from a pollution source (d), age (x) as variables must be available for all cases and controls

$$\eta_i = \psi_0 \exp\{\alpha_1 d_i + \alpha_2 x_i\} = \exp\{\alpha_0 + \alpha_1 d_i + \alpha_2 x_i\}$$

$$d_i = ||s_i - s_0|| \quad \text{distance from source}$$

$$s_0 \text{ is the source location}$$

Addition of Random effects

- It is easy to add various types of REs
- UH can be added via an individual level zero mean Gaussian effect:V~N(o,tau)
- CH is slightly different: A CAR model cannot be simply applied here
- Can use a CAR if you can defined neighborhoods?
- Otherwise must use a full MVN geostatistical model

Spatial.exp

• For point referenced data (i. e. measures made at locations) we can specify an effect such that :

$$u_{1},...,u_{m} \sim MVN(\mu,C)$$

C: covariance matrix

$$C_{ij} = cov(u_{i},u_{j}) = \tau \rho(||s_{i} - s_{j}||)$$

$$d_{ij} = ||s_{i} - s_{j}||$$

$$\rho(d_{ij}) = exp(-\alpha d_{ij}^{\beta})$$

Bayesian Geostatistical models

 $\eta_{i} = \exp\{A_{i}\}$ $A_{i} = \alpha_{0} + \alpha_{1}d_{i} + \alpha_{2}x_{i} + v_{i} + u_{i}$ $v_{i} \sim N(0, \tau_{v})$ $\mathbf{u} \sim MVN(\mathbf{0}, C)$ $C_{ij} = v \exp(-\alpha d_{ij}^{\rho})$

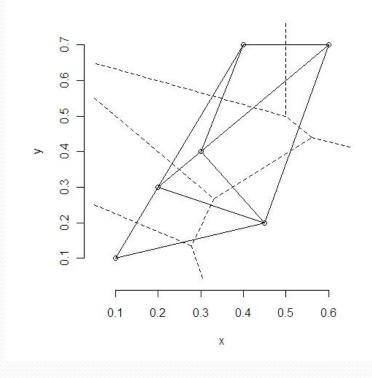
- Note: the spatial correlation effect has zero mean
- The spatial.exp model is available on WinBUGS
- Related to log Gaussian Cox processes

Alternative spatial structures

- Spatial.exp is very sensitive to sample size,
- It is very slow: inversion of NxN matrix at each iteration
- It is sensitive to structure of sampling mesh (singularities)
- Alternative: choose natural neighbors and consider intrinsic CAR? Much simpler
 - Possible via Delauney triangulation

Delauney Neighbors

X 0.1 0.2 0.4 0.45 0.6 0.3 Y 0.1 0.3 0.7 0.2 0.7 0.4 Num 2 4 3 4 3 4



Example

- Larynx and lung cancer (NW England)
- Dataset: larynx_cas_con_ldis.txt
- Variables: x, y, ind, dis, age
- Code file: logistic_case_con_bern_AGE.odc
- Using Delauney neighbors to define adjacencies

Models

	DIC	pD
• I D only	447.45	0.44
• II D+V	439.74	41.12
 III D+V+A 	366.67	89.01
• IV D+A	444.69	1.82
• V D+V+U	447.4	5.67
• VI D+V+U+A	352.94	118.10

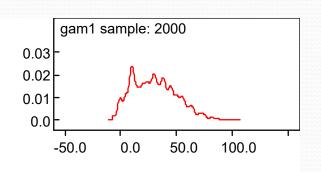
Lowest DIC is model VI

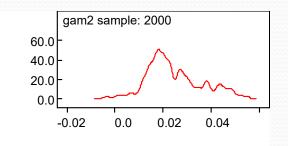
• D: distance; V: UH; U: CH; A: age

Model VI results

Node statistics

node	mean	sd	MCerro	r2.5%	median	97. <mark>5</mark> %	start	sample
gam0	-7.623	1.475	0.2146	-10.64	-7.43	-5.53	10001	2000
gam1	30.56	19.92	1.523	-1.001	29.31	73.13	<mark>10001</mark>	2000
gam2	0.02479	0.01175	0.001538	0.003891	0.02232	0.04966	10001	2000





Reference

• Lawson, A. B. (2012) Bayesian Point Event Modeling in Spatial and Environmental Epidemiology. *Statistical Methods in Medical Research* 21, 5, 509-530