
Statistical Models for Case events
 We assume that within an area A we have observed a 

set of m case events at locations 

 We also assume that within the area A we observe a set 
of  n controls 
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Larynx cancer example 
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Poisson process models
 The first order intensity is defined as

 This is the basic measure governing heterogeneous 
Poisson Process (HPP)

 Case events and controls can be thought to follow a  
HPP

 The conditional likelihood for a set of  m case events is 
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Alternative conditioning
 The case events form a set
 Also the n controls form a set 

 The case events have intensity
 The controls have intensity
 If we merge these sets i.e. superimpose them, then the 

joint set has intensity
 We now ask the question: what is the probability of a 

case at a given location in the joint set ?   
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Case probability 
 what is the probability of a case at a given location in 

the joint set ?
 This is just: 

 What is the probability of a control at a given location?
 This is just: 

 Hence, for short, 
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Conditional Logistic Regression
 This is just a logistic regression where

 and if the modelled intensity is 

1  if  is a case
0 if  is a control
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Logistic spatial model
 Hence we have a Bernoulli model for the outcome data 

and with a logistic link to a linear predictor we have a 
logistic spatial regression model:
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Space-Time (ST) extension
 Assume that case events arise at locations (s) and 

associated with a date of diagnosis (t) :
 Within A we observe m events:

 Probability of case at s and t :

 and conditioning on the joint set of cases and c0ntrols 
then 
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