
Model fitting: McMC and INLA
 Conventionally Markov chain Monte Carlo is used to 

estimate posterior quantities for Bayesian models 
(such as the convolution or log-normal models)
 WinBUGS is designed to do this via two basic methods

 Gibbs sampling
 Metropolis –Hastings 

 Approximation to posterior distributions has recently 
become available via Laplace approximation in the 
INLA package 
 Does not require iterative computation (unlike McMC)
 Fast computation
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INLA results
 CODE:
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formula1.UH = obs ~1+ f(region, model = "iid")

resultUH = inla(formula1.UH,family="poisson",
data=SCcongen90,control.compute=list
(dic=TRUE,cpo=TRUE,graph=TRUE),E=expe)
sum<-resultUH$summary.random
RE1<-sum$region[1:46,2]   # uncorrelated RE



Results: UH component (x 100)
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Results: local DIC and cpo
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INLA
 Integrated Nested Laplace Approximation

 Posterior approximation which relies on numerical 
integration and sparse matrix analysis

 Is particularly suited to Gaussian models, especially if 
the effects are log-Gaussian or Gaussian

 Linear Mixed Models  Or 
 Generalized linear mixed models
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INLA more formally
 Laplace approximation matches the mode and 

curvature of a Gaussian distribution to the posterior in 
question and uses this to provide an integral 
approximation to the density.

 For models close to Gaussian then the approximation 
is good. 
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How its computed 
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LMM or GLMM
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Some examples of spatial mixed 
models
 Geostatistical data: 
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Examples
 Small area health data: 
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Uncorrelated heterogeneity (UH)
 UH model (random intercept)

 Uncorrelated Noise model 
 Baseline risk model 
 Assumes no spatial correlation or trend
 Zero mean Gaussian prior distributions for effects 

 Intercept and random effect
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Correlated Heterogeneity (CH)
 This component is where correlation is introduced.
 Some times called clustering or spatially-structured
 We could assume a variety of forms for spatial correlation
 We often use a CAR model as it is simple and easy to fit
 It can be an improper  or proper prior distribution
 The ICAR (improper) is easy to fit on INLA and WinBUGS 
 The ICAR does not have a correlation parameter: the precision controls 

the variation  and  correlation 
 It is adaptive in that the variation depends on the neighborhoods
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Models on INLA
 INLA operates as for the LM function on R 

 Two components:
 formula and inla call

 Example:
>formula1=y~1+x
>result1=inla(formula1, 
family=“gaussian”,data=‘dataframe’)

 This fits a linear regression with intercept between y 
and x 
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INLA basic regression
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x1<-c(1.1,2.3,3.4,4.5,5.4)
x2<-c(-2.3,4.5,3.6,6.8,12.7)
y<-c(1.2,1.4,2.3,3.2,1.2)
As<-data.frame(x1,x2,y)

library(INLA)
##  1 predictor
formula1<-y~1+x1     # formula for model 
res1<-inla(formula1,family="gaussian",data=As,
control.compute=list(dic=TRUE,cpo=TRUE))   #fitting model 

summary(res1)      #   displays the summary of the fit
sum1<-res1$summary.fixed   # storing the regression estimates 
res1$dic   #  displaying the DIC results 



More sophistication
 Two predictors
formula2<-y~1+x1+x2
res2<-inla(formula2,family="gaussian",data=As,
control.compute=list(dic=TRUE,cpo=TRUE)) 

 Random effect
## random effect (one predictor and individual level 
random effect) 
ind<-seq(1:5)
formula3<-y~1+x1+f(ind,model='iid')
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Random slope, factor and RW 
smoothing model
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ind2<-c(1,1,1,2,2)

## random slope model 
Formula5<-y~1+x1+f(ind,x2,model="iid")

# factor random effect
Formula6<-y~1+x1+f(ind2,model="iid")

## smoothed RW model on predictor 
Formula7<-y~1+x1+f(x2,model="rw1")



Poisson examples 
(simple_Poisson_INLA_examples.txt)
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library(INLA)
# Poisson Bayesian regression

#EITHER:
formula1<-counts~1+POV
res1<-inla(formula1,family="poisson",data=death9,
control.compute=list(dic=TRUE,cpo=TRUE),E=EXPE)
summary(res1)
#OR:

formula1<-counts~1+POV+offset(log(EXPE))
res1<-inla(formula1,family="poisson",data=death9,
control.compute=list(dic=TRUE,cpo=TRUE))
summary(res1)



Random effect models
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#Poisson random intercept model
ind<-seq(1:9)
formula2<-
counts~1+POV+offset(log(EXPE))+f(ind,model="iid",
param=c(2,1))
res2<-inla(formula2,family="poisson",data=death9,
control.compute=list(dic=TRUE,cpo=TRUE))
summary(res2)



Goodness of Fit
 Goodness-of-fit (GOF) measures should be used to 

compare how well models fit the data
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Goodness of Fit
•Various measures are available:

Deviance:

Mean square error (or other residual based 
measures)

MSE:

Fitted values could be computed in 
different ways
AIC, BIC, DIC:  information criterion measures that 
penalize for number of parameters
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Deviance Information Criterion
 DIC is defined as:
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Deviance Information Criterion
 Deviance information Criterion (DIC)

 Smaller better; comparative tool
 pD measures the effective number of parameters 
 Hence DIC and pD should be small ideally
 Relative measure only: can have negative DIC ……..   BUT 

cant have negative pD

 Difference of 3-5 in DIC is ‘significant’  when you fit a 
series of models
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CPO and Marginal Predictive Likelihood
(BDM2013 ch 4)
 Conditional predictive ordinate (CPO)

 Can be computed from INLA or WinBUGS output for 
each observation

 Marginal predictive likelihood is a measure of overall 
GOF 

©Andrew B Lawson 2017

log( )i
i

M CPO=

1 1

1

1 ( )− −

=

 
=  
 
 θ
G

g
i i

g
CPO L

G



Small Area Health models on INLA
 Assume a Poisson likelihood and
 and  

 Linear modeling of the log relative risk 

 Usually we assume an additive model for effects. eg
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R-INLA demo
 INLA basics
 Graphs in R 
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Thematic Mapping in R 
 Polygon objects can be handled in R

 library(maptools)

 Imported from shapefiles:
>polys<-readShapePoly("filename.shp")
>plot(polys)
 Read in from GeoBUGS export files:
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R mapping

• Reading in polygons from shapefile
>setwd(“working directory")
>polySC<-readShapePoly("co45_d00.shp")
>plot(polySC)

• Reading in from GeoBUGS export file
>polySC<-readSplus("SC_geobugsSPlus.txt")
>plot(polySC)

• polySC is a polygon object and can be used for 
mapping on R. 
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Special INLA format
• INLA requires that a special format is used when 

fitting models with spatial components. 
• This format can be obtained via two routes:  

1) if adj and num vectors are available (already read into 
R) then the command

>geobugs2inla(adj, num, graph.file="SC_poly.txt")

will create a valid spatial graph file for inla models
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Special INLA format
2) using library spdep

>library(spdep)
>adjpoly<-poly2nb(polySC)
>nb2INLA("SC_poly.txt",adjpoly)

will create the graph file "SC_poly.txt"
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General Thematic Plotting on R
 Using ‘fillmap’ allows vectors to be mapped on R

>source(“fillmap.R”)
 a model fit is obtained in 'result1'
 then we can map result1$summary.random[,2] by the 

following:
>rand<-result1$summary.random$region[,2]
>fillmap(polySC,"random effect", rand*100, n.col=6)
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Example plot 
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Some INLA Examples 
 UH model
 CH model (ICAR)
 Convolution

 SCcongen_INLA_models.txt
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INLA Examples
 Fit a UH model to the SC congen90 data

 Plot of UH effect 
 DIC and local DIC map

 Fit a CH model to the same data
 Plot of CH component 
 DIC and local DIC map

 Fit a convolution model to the same data
 Plot of UH and CH components
 DIC and local DIC map
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Data input
SCcongen90<-
list(obs=c(0,7,1,5,1,1,5,16,0,17,4,0,0,1,1,7,1,3,0,0,8,2,13,7,0,8,
0,3,2,4,1,11,0,1,2,3,3,8,6,14,3,11,6,0,1,5),
expe=c(1.0807,6.3775,0.622,6.6854,0.9142,1.0744,5.6518,8.
1682,0.5749,18.0989,2.174,1.6619,1.9321,1.6148,1.6713,
3.0819,1.7562,4.9952,0.9362,1.2001,6.1293,2.5604,15.8589,2
.9437,1.0399,7.276,0.9739,2.064,2.7206,2.8275,
0.9425,8.828,0.3644,1.775,1.5111,1.5111,2.5321,4.5836,3.9647,
15.0264,0.732,10.8292,5.9848,1.4357,1.9949,6.9807))
region<-seq(1:46)
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UH model Commands
>library(INLA)
>formulaUH = obs~ f(region, model = "iid")
>resultUH = inla(formulaUH,family="poisson",
data=SCcongen90,control.compute=list(dic=TRUE),E=e
xpe)

>summary(resultUH)
>resultUH$summary.fixed;resultUH$summary.random
>rand<-resultUH$summary.random$region[,2]
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Graphics
>fillmap(polySC,"random effect",rand*100,n.col=6)
>dic<-resultUH$dic$local.dic
>fillmap(polySC,”DIC”,dic,n.col=6)
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CH models 1  ICAR 
>formulaCH = obs~f(region, 
model="besag",graph="SC.graph“)
>resultCH = 
inla(formulaCH,family="poisson",data=SCcongen90,con
trol.compute=list(dic=TRUE,cpo=TRUE,graph=TRUE),E
=expe)
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CH model 2: Convolution 
>region2<-region 
>formulaCONV1 = obs ~ 
f(region,model="iid",)+f(region2, model = "besag", graph 
= "SC.graph“)
>result1 = inla(formulaCONV1,family="poisson",
data=SCcongen90,control.compute=list(dic=TRUE,grap
h=TRUE),E=expe)
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CH models Conv alternative 
>formulaCONV2 = obs ~ f(region, model = "bym", graph 
= "SC.graph“)
>result1 = inla(formulaCONV2,family="poisson",
data=SCcongen90,control.compute=list(dic=TRUE,grap
h=TRUE),E=expe)
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INLA(Sccongen_INLA_models.txt)
 SC county level congenital abnormality deaths 1990
 UH, CH and % under poverty  covariate
DIC/ML results:
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Model DIC pD ML

UH only 169.35 1.017 -85.46

UH + POV 171.36 2.01 -92.96

UH+CH+POV 171.36 2.03 -124.37



Finally
 I have given an overview of the use of INLA for 

Bayesian disease mapping
 For a range of basic mapping tasks INLA is very fast 

and flexible
 Can also be used for space-time models 
 In addition a whole range of other spatial and non-

spatial models are available : longitudinal, survival, 
imaging, econometrics, point process modeling

 There is also WinBUGS, OpenBUGS, JAGS and STAN 
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Book
 Blangiardo, M. and Cameletti, M. (2015)
Spatial and Spatio-temporal Bayesian Models with R –
INLA, Wiley, New York 
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