
Model fitting: McMC and INLA
 Conventionally Markov chain Monte Carlo is used to 

estimate posterior quantities for Bayesian models 
(such as the convolution or log-normal models)
 WinBUGS is designed to do this via two basic methods

 Gibbs sampling
 Metropolis –Hastings 

 Approximation to posterior distributions has recently 
become available via Laplace approximation in the 
INLA package 
 Does not require iterative computation (unlike McMC)
 Fast computation
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INLA results
 CODE:
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formula1.UH = obs ~1+ f(region, model = "iid")

resultUH = inla(formula1.UH,family="poisson",
data=SCcongen90,control.compute=list
(dic=TRUE,cpo=TRUE,graph=TRUE),E=expe)
sum<-resultUH$summary.random
RE1<-sum$region[1:46,2]   # uncorrelated RE



Results: UH component (x 100)
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Results: local DIC and cpo
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INLA
 Integrated Nested Laplace Approximation

 Posterior approximation which relies on numerical 
integration and sparse matrix analysis

 Is particularly suited to Gaussian models, especially if 
the effects are log-Gaussian or Gaussian

 Linear Mixed Models  Or 
 Generalized linear mixed models

©Andrew B Lawson 2017



INLA more formally
 Laplace approximation matches the mode and 

curvature of a Gaussian distribution to the posterior in 
question and uses this to provide an integral 
approximation to the density.

 For models close to Gaussian then the approximation 
is good. 
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How its computed 
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LMM or GLMM
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Some examples of spatial mixed 
models
 Geostatistical data: 
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Examples
 Small area health data: 

©Andrew B Lawson 2017

=
= +

= +

 ( )

log( ) log( ) log( )
log( )

μ
μ θ

μ θ
θ β γ

i i

i i i

i i i
T T

i i i

y Pois
e

e

x z



Uncorrelated heterogeneity (UH)
 UH model (random intercept)

 Uncorrelated Noise model 
 Baseline risk model 
 Assumes no spatial correlation or trend
 Zero mean Gaussian prior distributions for effects 

 Intercept and random effect
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Correlated Heterogeneity (CH)
 This component is where correlation is introduced.
 Some times called clustering or spatially-structured
 We could assume a variety of forms for spatial correlation
 We often use a CAR model as it is simple and easy to fit
 It can be an improper  or proper prior distribution
 The ICAR (improper) is easy to fit on INLA and WinBUGS 
 The ICAR does not have a correlation parameter: the precision controls 

the variation  and  correlation 
 It is adaptive in that the variation depends on the neighborhoods
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Models on INLA
 INLA operates as for the LM function on R 

 Two components:
 formula and inla call

 Example:
>formula1=y~1+x
>result1=inla(formula1, 
family=“gaussian”,data=‘dataframe’)

 This fits a linear regression with intercept between y 
and x 
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INLA basic regression
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x1<-c(1.1,2.3,3.4,4.5,5.4)
x2<-c(-2.3,4.5,3.6,6.8,12.7)
y<-c(1.2,1.4,2.3,3.2,1.2)
As<-data.frame(x1,x2,y)

library(INLA)
##  1 predictor
formula1<-y~1+x1     # formula for model 
res1<-inla(formula1,family="gaussian",data=As,
control.compute=list(dic=TRUE,cpo=TRUE))   #fitting model 

summary(res1)      #   displays the summary of the fit
sum1<-res1$summary.fixed   # storing the regression estimates 
res1$dic   #  displaying the DIC results 



More sophistication
 Two predictors
formula2<-y~1+x1+x2
res2<-inla(formula2,family="gaussian",data=As,
control.compute=list(dic=TRUE,cpo=TRUE)) 

 Random effect
## random effect (one predictor and individual level 
random effect) 
ind<-seq(1:5)
formula3<-y~1+x1+f(ind,model='iid')
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Random slope, factor and RW 
smoothing model
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ind2<-c(1,1,1,2,2)

## random slope model 
Formula5<-y~1+x1+f(ind,x2,model="iid")

# factor random effect
Formula6<-y~1+x1+f(ind2,model="iid")

## smoothed RW model on predictor 
Formula7<-y~1+x1+f(x2,model="rw1")



Poisson examples 
(simple_Poisson_INLA_examples.txt)

©Andrew B Lawson 2017

library(INLA)
# Poisson Bayesian regression

#EITHER:
formula1<-counts~1+POV
res1<-inla(formula1,family="poisson",data=death9,
control.compute=list(dic=TRUE,cpo=TRUE),E=EXPE)
summary(res1)
#OR:

formula1<-counts~1+POV+offset(log(EXPE))
res1<-inla(formula1,family="poisson",data=death9,
control.compute=list(dic=TRUE,cpo=TRUE))
summary(res1)



Random effect models
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#Poisson random intercept model
ind<-seq(1:9)
formula2<-
counts~1+POV+offset(log(EXPE))+f(ind,model="iid",
param=c(2,1))
res2<-inla(formula2,family="poisson",data=death9,
control.compute=list(dic=TRUE,cpo=TRUE))
summary(res2)



Goodness of Fit
 Goodness-of-fit (GOF) measures should be used to 

compare how well models fit the data
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Goodness of Fit
•Various measures are available:

Deviance:

Mean square error (or other residual based 
measures)

MSE:

Fitted values could be computed in 
different ways
AIC, BIC, DIC:  information criterion measures that 
penalize for number of parameters
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Deviance Information Criterion
 DIC is defined as:
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Deviance Information Criterion
 Deviance information Criterion (DIC)

 Smaller better; comparative tool
 pD measures the effective number of parameters 
 Hence DIC and pD should be small ideally
 Relative measure only: can have negative DIC ……..   BUT 

cant have negative pD

 Difference of 3-5 in DIC is ‘significant’  when you fit a 
series of models
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CPO and Marginal Predictive Likelihood
(BDM2013 ch 4)
 Conditional predictive ordinate (CPO)

 Can be computed from INLA or WinBUGS output for 
each observation

 Marginal predictive likelihood is a measure of overall 
GOF 

©Andrew B Lawson 2017

log( )i
i

M CPO=

1 1

1

1 ( )− −

=

 
=  
 
 θ
G

g
i i

g
CPO L

G



Small Area Health models on INLA
 Assume a Poisson likelihood and
 and  

 Linear modeling of the log relative risk 

 Usually we assume an additive model for effects. eg
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R-INLA demo
 INLA basics
 Graphs in R 
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Thematic Mapping in R 
 Polygon objects can be handled in R

 library(maptools)

 Imported from shapefiles:
>polys<-readShapePoly("filename.shp")
>plot(polys)
 Read in from GeoBUGS export files:
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R mapping

• Reading in polygons from shapefile
>setwd(“working directory")
>polySC<-readShapePoly("co45_d00.shp")
>plot(polySC)

• Reading in from GeoBUGS export file
>polySC<-readSplus("SC_geobugsSPlus.txt")
>plot(polySC)

• polySC is a polygon object and can be used for 
mapping on R. 
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Special INLA format
• INLA requires that a special format is used when 

fitting models with spatial components. 
• This format can be obtained via two routes:  

1) if adj and num vectors are available (already read into 
R) then the command

>geobugs2inla(adj, num, graph.file="SC_poly.txt")

will create a valid spatial graph file for inla models
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Special INLA format
2) using library spdep

>library(spdep)
>adjpoly<-poly2nb(polySC)
>nb2INLA("SC_poly.txt",adjpoly)

will create the graph file "SC_poly.txt"
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General Thematic Plotting on R
 Using ‘fillmap’ allows vectors to be mapped on R

>source(“fillmap.R”)
 a model fit is obtained in 'result1'
 then we can map result1$summary.random[,2] by the 

following:
>rand<-result1$summary.random$region[,2]
>fillmap(polySC,"random effect", rand*100, n.col=6)
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Example plot 
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Some INLA Examples 
 UH model
 CH model (ICAR)
 Convolution

 SCcongen_INLA_models.txt
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INLA Examples
 Fit a UH model to the SC congen90 data

 Plot of UH effect 
 DIC and local DIC map

 Fit a CH model to the same data
 Plot of CH component 
 DIC and local DIC map

 Fit a convolution model to the same data
 Plot of UH and CH components
 DIC and local DIC map
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Data input
SCcongen90<-
list(obs=c(0,7,1,5,1,1,5,16,0,17,4,0,0,1,1,7,1,3,0,0,8,2,13,7,0,8,
0,3,2,4,1,11,0,1,2,3,3,8,6,14,3,11,6,0,1,5),
expe=c(1.0807,6.3775,0.622,6.6854,0.9142,1.0744,5.6518,8.
1682,0.5749,18.0989,2.174,1.6619,1.9321,1.6148,1.6713,
3.0819,1.7562,4.9952,0.9362,1.2001,6.1293,2.5604,15.8589,2
.9437,1.0399,7.276,0.9739,2.064,2.7206,2.8275,
0.9425,8.828,0.3644,1.775,1.5111,1.5111,2.5321,4.5836,3.9647,
15.0264,0.732,10.8292,5.9848,1.4357,1.9949,6.9807))
region<-seq(1:46)
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UH model Commands
>library(INLA)
>formulaUH = obs~ f(region, model = "iid")
>resultUH = inla(formulaUH,family="poisson",
data=SCcongen90,control.compute=list(dic=TRUE),E=e
xpe)

>summary(resultUH)
>resultUH$summary.fixed;resultUH$summary.random
>rand<-resultUH$summary.random$region[,2]
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Graphics
>fillmap(polySC,"random effect",rand*100,n.col=6)
>dic<-resultUH$dic$local.dic
>fillmap(polySC,”DIC”,dic,n.col=6)
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CH models 1  ICAR 
>formulaCH = obs~f(region, 
model="besag",graph="SC.graph“)
>resultCH = 
inla(formulaCH,family="poisson",data=SCcongen90,con
trol.compute=list(dic=TRUE,cpo=TRUE,graph=TRUE),E
=expe)
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CH model 2: Convolution 
>region2<-region 
>formulaCONV1 = obs ~ 
f(region,model="iid",)+f(region2, model = "besag", graph 
= "SC.graph“)
>result1 = inla(formulaCONV1,family="poisson",
data=SCcongen90,control.compute=list(dic=TRUE,grap
h=TRUE),E=expe)
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CH models Conv alternative 
>formulaCONV2 = obs ~ f(region, model = "bym", graph 
= "SC.graph“)
>result1 = inla(formulaCONV2,family="poisson",
data=SCcongen90,control.compute=list(dic=TRUE,grap
h=TRUE),E=expe)
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INLA(Sccongen_INLA_models.txt)
 SC county level congenital abnormality deaths 1990
 UH, CH and % under poverty  covariate
DIC/ML results:
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Model DIC pD ML

UH only 169.35 1.017 -85.46

UH + POV 171.36 2.01 -92.96

UH+CH+POV 171.36 2.03 -124.37



Finally
 I have given an overview of the use of INLA for 

Bayesian disease mapping
 For a range of basic mapping tasks INLA is very fast 

and flexible
 Can also be used for space-time models 
 In addition a whole range of other spatial and non-

spatial models are available : longitudinal, survival, 
imaging, econometrics, point process modeling

 There is also WinBUGS, OpenBUGS, JAGS and STAN 
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Book
 Blangiardo, M. and Cameletti, M. (2015)
Spatial and Spatio-temporal Bayesian Models with R –
INLA, Wiley, New York 
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