#### INLA

- Recently an alternative to McMC has been proposed for certain Bayesian models
- Integrated Nested Laplace approximation (INLA)
- This uses an approximation to the posterior distribution
- Computationally it is fast: uses numerical integration and Gaussian approximation
- No need to do ANY McMC!
- Useful for simpler models

### Some Information

- Use R-INLA package
  - Obtainable from <a href="www.r-inla.org">www.r-inla.org</a>

# SC congenital mortality

- File: SCcongen9o\_INLA\_Rcode.txt
  - Includes the data, inla call, and graphics function
  - Need to import/create polygon maps in R
  - GeoBUGS maps can be exported in SPlus format (as text file: SC\_geobugsSPlus.txt)
  - Code below sets up the polygon map:
    - geobugsSC<-readSplus("SC\_geobugsSPlus.txt")</li>
    - plot(geobugsSC)
  - Fillmap function produces the polygon plot:
    - fillmap(geobugsSC, maintitle1, RE1, n.col=6)

### Some inla code

- library(INLA)
- Need to create a .graph file including the adjacencies and number of neighbors
- There is an inla function for this:
   inla.geobugs2inla(adj,num,graph.file="SC.graph")
- Uses the 'adj' and 'num' vectors from WinBUGS
- this creates a file with the correct structure

### **Model Code**

```
prior.iid = c(1,0.01)
prior.besag = c(1,0.001)
initial.iid = 4
initial.besag = 3
formulai.bym = obs ~ f(region, model = "bym", graph.file =
"SC.graph",
            param = c(prior.iid, prior.besag),
            initial = c(initial.iid, initial.besag))
result1 = inla(formula1.bym,family="poisson",
data=SCcongen9o,control.compute=list(dic=TRUE,cpo=TRUE,gra
ph=TRUE), E=expe)
```

### Formula call

```
formulai.bym = obs ~ f(region, model = "bym", graph.file
= "SC.graph",param = c(prior.iid, prior.besag),
initial = c(initial.iid, initial.besag))
```

- This call sets up a model formula (like in glm in R)
  - In this case th dependent variable 'obs' is related to 'region' with a convolution model with UH and CH components ('iid', and 'Besag')
  - It uses the SC.graph polygons
  - Note that the f(....) function could be much more general...including linear functions of covariates and even spline functions

## Function examples

• Example:

```
inla(obs~1+x+f(ind, model="iid") + f(ind2, weights, model="ar1"))
```

- Would fit a regrssion wiht intercept and x covariayte with 2 other smooth terms in the variable 'ind'
- One term is random
- One term is autoregressive with 'weights'

## Results





#### Results



#### McMC Versus INLA

- McMC is often more flexible
- Easier for complex models with unusual structures
- Deals with missingness easily
- INLA is easy to implement for Gaussian –like models
- Good for flexible spline –like covariate models
- INLA is fast
- INLA can't deal with missing values in covariates