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ace-time (ST) Modeling
(BDM13, ch 12)

e Some notation

e Assume counts within fixed spatial and temporal
periods: map evolutions

e Both space and time are subscripts in the analysis

e Consider separable models (with spatial and separate
temporal terms)

e Also interaction effects

©Andrew Lawson 2014



Notation
outcome: y;; RRIsk: &,

expected count: e,

1=1....m: small areas
] =1,...,Jd . time periods



J Expected Counts

* Computation (simplest - overall average):

€ = pij'izz Yii /IZZ P;
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Basic retrospective model

* Infinite population; small disease probability

* Poisson assumption

Vi POiS(eij‘gij)

log(6;) =, +S; + T, + ST,
S. :spatial terms

T, : temporal terms

ST; : Interaction
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Full data set: 21 years of Ohio lung cancer

* 10 years of SMRs standardized with the statewide rate:
1979-1988

* Frequently analyzed

* Row wise from 1979
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Ohio SMR year 12

11410 1.79 (18)
09610 1.14 (16)
W 0.81100.96 (17)
106810081 (18)
10 10088 (19)

| Ohio SMR year 13

W 11310 146 (16)
01101.13 (17}
8710 1.01 (17)
10,64 10 0.87 (20)
Clo 0064 (18)

Ohio SMR year 15

W 1.15102.15 (15)
W0.99101.15 (19)

8410099 (17)
[H0.72100.84 (19)
100.72 (18)

W114t0141 (19)
0.8910 1.14 (14)
0.87100.99 (17)
[10.71 10 0.87 (20)
Jo0 11071 (18)

Ohio SMR year 18

Ohia SMR year 14

W 1.0910 159 (21)
W0.96101.09 (13)
M 0.82100.96 (18)
0750082 (15)
0

[Jo  wo7s @1)

Ohio SMR year 16

M 11310226 (17)
0210113 (14)
8910 1.02 (19)
[0 0.74 10 0.69 (20)
1o to0.74 (18)

Ohio SMR year 17
1610 1.62 (18)

Ohio SMR year 19

Wit 017 (18)
0881011 (17)
0.88100.99 (18)
0.7 10088 (15)
0 1007 (20)

Ohio_smr20
W1121016 (20)

o 1073 {20)

Ohio_smr21

W15t 158 (15)
W 1.07 to 115 (17)

0.88 10 1.07 (19)
[ 06610 0.88 (18)
[0 1066 (19)
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““Some Random Effect models

model 1a:

log(&;) = oy +V; +u; + St

model 1b:

log(6;) =, +V, +U; +7,

model 2:

Iog(Hij) =tV tU; + 7y + 75
model 3:

l0g(6;) =y +V, +U; + 7, Ty
model 4:

|Og(‘9ij) =0y +Vi+Ui + 7 +7, TV
model 5: variants of (3) with
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Random Walk Prior distribution

® Model 1 b: we assume a random effect for the time
element and this has a random walk prior distribution:

* More generally an AR1 prior could be used:

. N(/Ij/j_l,r;l : Qa1
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~ Interaction priors

* A variety of priors for the interaction can be
assumed (both correlated and non-separable)

* Knorr-Held (2000) first su%gested dependent
priors (see Lawson (2013) chi2)

» Two simple separable examples of possible priors
are:

w; ~ N(0,7,) uncorrelated (model 3)
w; ~ N(v; ,,7,) random walk (model 5)
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“Model fitting Results

Model DIC pD
la 5759 80
1b 5759 80
2 ©7/59.4 79
3 5/51.4 129
4 57155.3 129
5 5750.6 115
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" Interpretation

* The temporal trend model does not provide a
better fit than the random walk (1a, 1b)

® The extra RE in model 2 is not needed

* The inclusion of the interaction in model 3 is
significant but model 4 is not good

* Model 5 with the random walk interaction seems
best as it has lowest DIC and smaller pD than
model 3
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Space-time Kalman Filter

* The Kalman Filter consists of a coupled set of
equations describing the behavior of a system and also
the measurement made on the system

* In a dynamic setting it is an appropriate model for an
evolving system observed with error

©Andrew Lawson 2014



System structure evolution

* e.g. risk evolving over time
‘9ij ~ N (F(Hi,j_1)1r)

e.q.
F (gi,j—l) = ﬂ“gi,j—l (AR1)

or F (Hi,j—l) = A0 i
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Measurement model

* Poisson (independent) error
i POIS(/uij)
g & ‘9ij

* In the classic Kalman filter the errors would be
Gaussian and the measurement model could also
have correlated errors
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(Gaussian approximation

*  We can proceed to generalize this to allow
correlation if we assume a log Gaussian form

* This leads to a hidden Markov model

Iog(yij /eij) ~N (/uij )
exp{:uij} = eij
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ull Model

e Structural model

‘9ij = N(F(ei,j—l)1r)1
with T",, =cov(b;,6,)

oM t del i
easurement mode z; = log(y; /&;) ~ N(z;,Z)

exp{:uij} = ‘9ij
2. = (:ov(zij : z,j)
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- WinBUGS Code

* DIC: 1657 (767)

for (i in 1:m){

for (jin 1:T){
Lyeli,j]<-log((y[i,j]+0.01)/(e]i,j]+0.01))
Lye[i,j]~dnorm(mulfi,j],tauS)
thetali,j]<-exp(Lthetali,j])
mulli,jJ<-aO+Lthetali,j]+Struct[i]+R[j]}}
for (iin 1 :m){
Ltheta[i,1:T]~dmnorm(muli,],covT[,])}
for (j in 1:T){R[j]~dnorm(0,tauR)}
for(i in 1:m){

mul[i,1]<-theta]i,1]

for (jin 2:T){

mul[i,j]<-thetali,j-1]}}

for(iin 1.T)

{for(j in 1.T)

{d[i,j]<-abs(j-i)
covTl[i,j]<-sig2*pow(rho,d[i,j])}}
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Clustering in ST data
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Clustering in ST data

* Clustering is a different issue.
* Earlier we examined exceedence probabilities
* These can also be used with ST data

Pr(6, > c)
c=1lor2or3
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Added simulated clusters
Exceedence C=1
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