Space-time Modeling I

BMTRY 763

Space-time (ST) Modeling (BDM13, ch 12)

- Some notation
 - Assume counts within fixed spatial and temporal periods: map evolutions
 - Both space and time are subscripts in the analysis
 - Consider separable models (with spatial and separate temporal terms)
 - Also interaction effects

Notation

outcome:
$$y_{ij}$$
; RRisk: θ_{ij}
expected count: e_{ij}
 $i = 1,...,m$: small areas
 $j = 1,...,J$: time periods

Expected Counts

Computation (simplest - overall average):

$$e_{ij} = p_{ij} \cdot \sum_{i} \sum_{j} y_{ij} / \sum_{i} \sum_{j} p_{ij}$$

Basic retrospective model

- Infinite population; small disease probability
- Poisson assumption

$$y_{ij} \sim Pois(e_{ij}\theta_{ij})$$

$$\log(\theta_{ij}) = \alpha_0 + S_i + T_j + ST_{ij}$$

 S_i : spatial terms

 T_i : temporal terms

 ST_{ii} : interaction

Full data set: 21 years of Ohio lung cancer

- 10 years of SMRs standardized with the statewide rate: 1979-1988
- Frequently analyzed
- Row wise from 1979

Some Random Effect models

model 1a:

$$\log(\theta_{ij}) = \alpha_0 + v_i + u_i + \beta t_j$$

model 1b:

$$\log(\theta_{ij}) = \alpha_0 + v_i + u_i + \gamma_j$$

model 2:

$$\log(\theta_{ij}) = \alpha_0 + v_i + u_i + \gamma_{1j} + \gamma_{2j}$$

model 3:

$$\log(\theta_{ij}) = \alpha_0 + v_i + u_i + \gamma_{2j} + \psi_{ij}$$

model 4:

$$\log(\theta_{ij}) = \alpha_0 + v_i + u_i + \gamma_{1j} + \gamma_{2j} + \psi_{ij}$$

model 5: variants of (3) with ψ_{ij}

Random Walk Prior distribution

 Model 1 b: we assume a random effect for the time element and this has a random walk prior distribution:

$$\gamma_j \sim N(\gamma_{j-1}, \tau_{\gamma}^{-1})$$

• More generally an AR1 prior could be used:

$$\gamma_j \sim N(\lambda \gamma_{j-1}, \tau_{\gamma}^{-1}); \quad 0 < \lambda \le 1$$

Interaction priors

- A variety of priors for the interaction can be assumed (both correlated and non-separable)
- Knorr-Held (2000) first suggested dependent priors (see Lawson (2013) ch12)
- Two simple separable examples of possible priors are:

$$\psi_{ij} \sim N(0, \tau_{\psi})$$
 uncorrelated (model 3)
 $\psi_{ij} \sim N(\psi_{i,j-1}, \tau_{\psi})$ random walk (model 5)

Model fitting Results

Model	DIC	pD
1a	5759	80
1b	5759	80
2	5759.4	79
3	5751.4	129
4	5755.3	129
5	5750.6	115

Interpretation

- The temporal trend model does not provide a better fit than the random walk (1a, 1b)
- The extra RE in model 2 is not needed
- The inclusion of the interaction in model 3 is significant but model 4 is not good
- Model 5 with the random walk interaction seems best as it has lowest DIC and smaller pD than model 3

Space-time Kalman Filter

- The Kalman Filter consists of a coupled set of equations describing the behavior of a system and also the measurement made on the system
- In a dynamic setting it is an appropriate model for an evolving system observed with error

System structure evolution

e.g. risk evolving over time

$$\theta_{ij} \sim N(F(\theta_{i,j-1}), \Gamma)$$
e.g.
$$F(\theta_{i,j-1}) = \lambda \theta_{i,j-1} \text{ (AR 1)}$$
or $F(\theta_{i,j-1}) = \lambda_i \theta_{i,j-1}$

Measurement model

Poisson (independent) error

$$y_{ij} \sim Pois(\mu_{ij})$$

$$\mu_{ij} = e_{ij}\theta_{ij}$$

• In the classic Kalman filter the errors would be Gaussian and the measurement model could also have correlated errors

Gaussian approximation

- We can proceed to generalize this to allow correlation if we assume a log Gaussian form
- This leads to a hidden Markov model

$$\log(y_{ij} / e_{ij}) \sim N(\mu_{ij}, \Sigma)$$
$$\exp\{\mu_{ij}\} = \theta_{ij}$$

Full Model

Structural model

$$\theta_{ij} \sim N(F(\theta_{i,j-1}), \Gamma),$$
with $\Gamma_{j,k} = \text{cov}(\theta_{ij}, \theta_{ik})$

Measurement model

$$z_{ij} = \log(y_{ij} / e_{ij}) \sim N(\mu_{ij}, \Sigma)$$

$$\exp\{\mu_{ij}\} = \theta_{ij}$$

$$\Sigma_{il} = \cos(z_{ij}, z_{lj})$$

WinBUGS Code

• DIC: 1657 (767)

```
for (i in 1:m){
for (j in 1:T){
Lye[i,j]<-log((y[i,j]+0.01)/(e[i,j]+0.01))
Lye[i,j]~dnorm(mu1[i,j],tauS)
theta[i,j]<-exp(Ltheta[i,j])
mu1[i,j]<-a0+Ltheta[i,j]+Struct[i]+R[j]}}
for (i in 1 :m){
Ltheta[i,1:T]~dmnorm(mu[i,],covT[,])}
for (j in 1:T)\{R[j]\sim dnorm(0,tauR)\}
for(i in 1:m){
mu[i,1]<-theta[i,1]
for (j in 2:T){
mu[i,j]<-theta[i,j-1]}}
for(i in 1:T)
{for(j in 1:T)
\{d[i,j] < -abs(j-i)\}
covT[i,j]<-sig2*pow(rho,d[i,j])}}
```

Clustering in ST data

Clustering in ST data

- Clustering is a different issue.
- Earlier we examined exceedence probabilities
- These can also be used with ST data

$$\Pr(\theta_{ij} > c)$$

$$c = 1$$
 or 2 or 3

Ohio SMR 21 years

Added simulated clusters Exceedence C=1

Exceedence C=2

