Bayesian Model Goodness of Fit

DIC, AIC, BIC,
PPL, MSPE
Residuals
Predictive residuals

Overall Measures of GOF

• **Deviance**: this measures the overall likelihood of the model given a parameter vector

$$D(\mathbf{\theta}) = -2 \log L(\mathbf{\theta})$$

This can be averaged over all L iterations of a sampler to give

$$\overline{D} = \frac{1}{L} \sum_{l=1}^{L} D(\mathbf{\theta}^{l})$$
 where the

 θ' is the I th iteration parameters

Deviance Information Criterion

- The deviance is a measure of GOF but is not adjusted for parameterisation.
- The deviance information criterion (DIC) is adjusted for number of parameters
- The formula is given as

 $DIC = \overline{D} + pD$ where pD is the effective number of parameters, estimated as

$$pD = \overline{D} - D(\hat{\theta}) = Dbar - Dhat$$
 and

 $\hat{\theta}$ is the posterior mean parameter vector estimates

DIC notes

- Note that while Dbar can be computed in the sampler
- Dhat can only be computed at the end
- pD can be negative and this is a **major** problem
- DIC can also be negative but this is not a problem
- DIC is only a relative measure : lower values better
- DIC difference of at least 2 3 are need for a better model (i.e. model 1: DIC= 124.0; model 2: DIC= 120.0 means that model 2 is preferred)
- pD is a secondary criterion of GOF (parsimony)

DIC, AIC BIC

- DIC is related to AIC and is equal to AIC when models with only fixed effects are fitted
- AIC: Akaike Information Criterion

$$AIC = -2log L(\theta) + 2p = D(\theta) + 2p$$

where θ is an estimated vector (eg ML)
and p is the number of parameters

Bayesian Information Criterion

- BIC:
 - Like AIC except the penalty is a function of the sample size

 $BIC = -2 log L(\theta) + p lnn = D(\theta) + p lnn$ where θ is an estimated vector (eg ML) and p is the number of parameters

Random Effects and AIC/BIC

- AIC and BIC assumes that you can estimate the number of parameters in the model
- This is not clear in the case of random effects
- A single random intercept involves a variance parameter for the (usually) Gaussian prior distribution BUT there are N different effects estimated.
- Should the number of parameters contributed be \mathbb{N} or $\mathbb{N}+1$, or just $\mathbb{1}$??
- The DIC tries to estimate this within the sampler
- Hence AIC and BIC are difficult to compute as P is unclear

DIC estimation

- DIC is usually estimated from McMC samplers.
- It requires convergence !!
- Can have Dhat > Dbar and so pD can be negative.
- This implies over-dispersion in the sampler.
- Alternative estimation of pD
- Can use a crude (approximate) estimator which is always positive:

$$\widehat{pD} = \widehat{var}(D(\theta))/2$$

Posterior Predictive Loss

Posterior Predictive loss (PPL)

This is the average loss measured between the observed data and the data predicted from the posterior predictive distribution :

$$r_i^p = y_i - y_i^{Pred}$$

where y_i^{Pred} is a value of from the predictive distribution

MSPE: mean square predictive error is just this averaged.

Predictive Distribution

a new value of y is y*: $f(y^*/y) = \int f(y^*/y,\theta) p(\theta | y) d\theta$ where $p(\theta | y)$ is the posterior distribution and $f(y^*/y_t\theta)$ is the likelihood of y^* This is just the expected value of the likelihood over the posterior. To get an approximate value we can generate samples from $p(\theta | y)$ and then use these in $f(y^*/y_0\theta)$ and average. This approximates $\int f(y^*/y_t, \theta) p(\theta | y) d\theta$.

and average them to get predictive y values

WinBUGS code

```
    y[i]~dpois(mu[i])
    ypred[i]~dpois(mu[i])
    will generate predictive distribution values averaged over the sampler
```

- R[i]<-y[i]-ypred[i] # predictive residual
- Sqr[i]<-pow(R[i],2)
- }
- mspe<-mean(Sqr[])

Residuals

- Can get item-wise diagnostics also
 - Bayesian residuals
 - Predictive residuals
 - Standardization also

$$r_i = y_i - \mu_i$$
$$r_i^p = y_i - y_i^*$$