
Generalised Linear
Mixed Models

The development of linear models for the
outcomes, historically, moved from the
normal linear model, through generalised
linear models, to generalised linear mixed
models (GLMMs). GLMMs are a set of
models for discrete or continuous data
characterised by link functions to linear
predictors, where there are random
coefficients or random effects in the linear
model.



We have seen random coefficient models
already:
 Random coefficient models: they are just the

models with prior distributions for the
parameters.
 example:
 yi  N i,2, dependent variable
  i  0  1x1i  2x2i independent

variables x1,x2

 0  N0,a,
 1  N0,a,
 2  N0,a,
 where a  10000.

 Here the regression parameters are random
and have prior distributions

 The model example above is a special case of
a GLMM. It is a normal (Gaussian) linear
model, with identity link, and regression
parameters which are random variables.



 A binomial example (y dependent variable:
two independent variables x1,x2 :
 the outcome/response variable is

binomial here:
 yi  bin i,ni,
 we usually use a logit link to a linear

predictor:
 logit( i  0  1x1i  2x2i

 0  N0,a,
 1  N0,a,
 2  N0,a,
 where a  10000.



Random Effects
 Most studies in medicine or bioinformatics

are not complete.
 That is, we dont always have complete

knowledge of the system under study
 The implication of this is that there could be

extra variation in the study which adds noise
to the observed data. There could be:
 a known confounder or explanatory

variable which you havent measured
 an unknown factor which you havent

measured which is related to the
outcome.

 What do we do about this?
 we could ignore it (many frequentist

statisticians do this)
 we could try to get rid of it
 we could model or estimate it



Approaches to random
effects
 normal example:

 Ignore them: yi   i  ei

 here ei  pure errorextra noise
 this leaves the estimate of

ei  yi   i with the extra noise
 Get rid of the extra noise: assume

yi   i  vi  ei where
 vi is the extra noise and ei is the

pure error
 either estimate vi or remove it

 Problem: we must now consider
identifiability : how do we separate out vi and
ei.



 This is a major problem. Each term must have
a different form if we are to have a hope of
recovering it (as they are similar in form). For
Bayesians this is not difficult as we can
assume strong priors to make sure they are
separable. However even if we assume a
distribution for one or both of these effects
we must still decide how to dewala with the
overall problem.

 To get rid of the vi we could
 a) assume a prior dsitribution and

concentrate the parameter out of the
problem (ie integrate over the parameter
space)

 This can be done by finding the marginal
posterior distribution of y given the other
parameters ():

Mp  
v

fy|v,pvdv
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OR
  b) assume a prior distribution and

estimate the parameter i.e. use the
posterior distribution

P  fy|v,pvp

 there are many ways to handle this
estimation

 If you are fully Bayesian you will
sample the posterior distribution in the
usual way

 Some people use special non-Bayesian
methods for this (quasi-likelihood,
penalised likelihood, estimating
equations)



Bayesian Random Effect
Modeling
We can specifiy a range of random effect
models:
 Gaussian example:

 yi  N i  zi,2, dependent variable
  i  0  1x1i  2x2i independent

variables x1,x2

 zi  vi  ui random effects (vi,ui)
 this is a mixed model and a particular

example of a GLMM
 a simple Bayesian RE model:
 yi   i  zi  ei

 what distribution should the REs have?
 We must separate the terms



 What about
 zi  N0,z

2
 ei  N0,e

2
 Assuming the variance are relatively

different then we might be able to
distinguish the terms
 Can we use hyperpriors for this?

YES!
 z

2  E
 e

2  E
 where   1 is a constant multiplier
 This will make the variances

different and so it will be more
diffcult for any sampler to exchange
the parameters



Another Example: Disease
Mapping

 lets assume that we have a collection of m
regions (eg counties, or zip codes or census
tracts, municipalities). Withijn these you
observe disease incidence. Let yi be the count
of disease in the i th small area.

 We often also calculate an expected rate for
each small area ei.

 This is calculated often by some standard rate
eg
 ei  pi  ij

rijpij where rij is a strata

specific rate in j th strata
 and pij is the population of the j th strata

in i th small area
 Strata could be age groups or gender

class or both



Mapping Models

 Basic model: yi  Poissei i
  i is called the relative risk in the i th small

area
 A crude ML estimate of  i is


 i  yi/ei the

SMR for each region
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 Scottish lip cancer example: lip cancer
mortality for a period of years

 example given in WinBUGS manual



(GeoBUGS manual:lips)

 Lip cancer is relatively rare and is known to
be related to exposure to sunlight (as one
aetiological factor)



 Data:The rates of lip cancer in 56 counties in
Scotland have been analysed by Clayton and
Kaldor (1987) and Breslow and Clayton
(1993). The form of the data includes the
observed and expected cases (expected
numbers based on the population and its age
and sex distribution in the county), a
covariate measuring the percentage of the
population engaged in agriculture, fishing, or
forestry, and the "position” of each county
expressed as a list of adjacent counties.



model

{

for (i in 1 : N) {

h[i]~dnorm(0.0,tau.h)

O[i] ~dpois(mu[i])

log(mu[i]) - log(E[i])  alpha0  alpha1
*X[i]h[i]

RR[i] - exp(alpha0  alpha1 * X[i]h[i]) #
Area-specific relative risk (for maps)

}



# Other priors:

alpha0 ~dflat()

alpha1 ~dnorm(0.0, 1.0E-5)

tau.h ~dgamma(0.5, 0.0005)

sigma.h - sqrt(1 / tau.h) # standard
deviation

}



list(N  56,

O  c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20,

13, 5, 3, 8, 17, 9, 2, 7, 9, 7,

16, 31, 11, 7, 19, 15, 7, 10, 16, 11,

5, 3, 7, 8, 11, 9, 11, 8, 6, 4,

10, 8, 2, 6, 19, 3, 2, 3, 28, 6,

1, 1, 1, 1, 0, 0),



E  c( 1.4, 8.7, 3.0, 2.5, 4.3, 2.4, 8.1, 2.3, 2.0,
6.6,

4.4, 1.8, 1.1, 3.3, 7.8, 4.6, 1.1, 4.2, 5.5, 4.4,

10.5,22.7, 8.8, 5.6,15.5,12.5, 6.0,
9.0,14.4,10.2,

4.8, 2.9, 7.0, 8.5,12.3,10.1,12.7, 9.4, 7.2, 5.3,

18.8,15.8, 4.3,14.6,50.7, 8.2, 5.6,
9.3,88.7,19.6,

3.4, 3.6, 5.7, 7.0, 4.2, 1.8),

X  c(16,16,10,24,10,24,10, 7, 7,16,

7,16,10,24, 7,16,10, 7, 7,10,

7,16,10, 7, 1, 1, 7, 7,10,10,

7,24,10, 7, 7, 0,10, 1,16, 0,

1,16,16, 0, 1, 7, 1, 1, 0, 1,

1, 0, 1, 1,16,10))



list( tau.h1,alpha0  0, alpha1  0,

hc(0,0,0,0,0,NA,0,NA,0,0,

NA,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0))

We can run this model for a large number of
iterations (until convergence of course)

Then we can map the relevant RR and h
components.



How can we simplify this
model?
 Run without covariate and check DIC for

both models?
 Does the covaraite explain any of the

variation in lip cancer incidence?




